Aim: To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells.
Methods: Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death.
Results: Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species (ROS), especially under pathological conditions.
Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism, especially in terms of fatty acid metabolism, reactive oxygen species (ROS) production, and ROS scavenging, and it is now clear that they metabolically interact with each other. These two organelles share some properties, such as great plasticity and high potency to adapt their form and number according to cell requirements.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) arises as a consequence of mutations in the dystrophin gene. Dystrophin is a membrane-spanning protein that connects the cytoskeleton and the basal lamina. The most distinctive features of DMD are a progressive muscular dystrophy, a myofiber degeneration with fibrosis and metabolic alterations such as fatty infiltration, however, little is known on lipid metabolism changes arising in Duchenne patient cells.
View Article and Find Full Text PDFl-carnitine is a key molecule in both mitochondrial and peroxisomal lipid metabolisms. l-carnitine is biosynthesized from gamma-butyrobetaine by a reaction catalyzed by the gamma-butyrobetaine hydroxylase (Bbox1). The aim of this work was to identify molecular mechanisms involved in the regulation of l-carnitine biosynthesis and availability.
View Article and Find Full Text PDFFatty acids are known to serve as energetic substrates, key components of membrane lipids, and as substrates for the synthesis of signaling molecules and complex lipids. They are also known to be ligands either of membrane receptors involved in cell signaling or of nuclear receptors mediating gene regulation. Accumulation of fatty acids due to altered metabolism and/or unbalanced diet has been described to be toxic for several tissues, especially liver.
View Article and Find Full Text PDFThe peroxisomal beta oxidation of very long chain fatty acids (VLCFA) leads to the formation of medium chain acyl-CoAs such as octanoyl-CoA. Today, it seems clear that the exit of shortened fatty acids produced by the peroxisomal beta oxidation requires their conversion into acyl-carnitine and the presence of the carnitine octanoyltransferase (CROT). Here, we describe the consequences of an overexpression and a knock down of the CROT gene in terms of mitochondrial and peroxisomal fatty acids metabolism in a model of hepatic cells.
View Article and Find Full Text PDFIn mammals, during the aging process, an atrophy of the muscle fibers, an increase in body fat mass, and a decrease in skeletal muscle oxidative capacities occur. Compounds and activities that interact with lipid oxidative metabolism may be useful in limiting damages that occur in aging muscle. In this study, we evaluated the effect of L-carnitine and physical exercise on several parameters related to muscle physiology.
View Article and Find Full Text PDFL-Carnitine plays an important role in skeletal muscle bioenergetics, and its bioavailability and thus its import may be crucial for muscle function. We studied the effect of thyroid hormone, insulin, and iron overload, hormones and nutrients known to alter muscle metabolism, on L-carnitine import into C2C12 cells. We report here L-carnitine uptake is increased by thyroid hormones and decreased by iron.
View Article and Find Full Text PDFHuman adults store around 20g of l-carnitine. In the human body, l-carnitine is not metabolized but excreted through the kidney. Lost l-carnitine has to be replenished either by a biosynthetic mechanism or by the consumption of foods containing l-carnitine.
View Article and Find Full Text PDFExtracellular ATP regulates cell proliferation, muscle contraction and myoblast differentiation. ATP present in the muscle interstitium can be released from contracting skeletal muscle cells. L-Carnitine is a key element in muscle cell metabolism, as it serves as a carrier for fatty acid through mitochondrial membranes, controlling oxidation and energy production.
View Article and Find Full Text PDFL-carnitine is an essential cofactor for the transport of fatty acids across the mitochondrial membranes. L-carnitine can be provided by food products or biosynthesized in the liver. After intestinal absorption or hepatic biosynthesis, L-carnitine is transferred to organs whose metabolism is dependent upon fatty acid oxidation, such as the skeletal muscle and the heart.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2006
Gamma-butyrobetaine hydroxylase (BBOX1) is the enzyme responsible for the biosynthesis of l-carnitine, a key molecule of fatty acid metabolism. This cytosolic dimeric protein belongs to the dioxygenase family. In human, enzyme activity has been detected in kidney, liver and brain.
View Article and Find Full Text PDFL-Carnitine is a key molecule in the transfer of fatty acid across mitochondrial membranes. Bioavailable L-carnitine is either provided by an endogeneous biosynthesis or after intestinal absorption of dietary items containing L-carnitine. After intestinal absorption or hepatic biosynthesis, L-carnitine is transferred to organs whose metabolism is dependent upon fatty acid oxidation, such as skeletal muscle.
View Article and Find Full Text PDF