Publications by authors named "Francoise Guerlesquin"

Bacterial cell motility is essential for a range of physiological phenomena such as nutrient sensing, predation, biofilm formation and pathogenesis. One of the most intriguing motilities is bacterial gliding, which is defined as the ability of some bacteria to move across surfaces without an external appendage. In Myxococcus xanthus, gliding motility depends on the assembly of focal adhesion complexes (FAC) which include the Glt mutiprotein complex and allow directional movement of individual cells (A-motility).

View Article and Find Full Text PDF

Tau protein has been extensively studied due to its key roles in microtubular cytoskeleton regulation and in the formation of aggregates found in some neurodegenerative diseases. Recently it has been shown that zinc is able to induce tau aggregation by interacting with several binding sites. However, the precise location of these sites and the molecular mechanism of zinc-induced aggregation remain unknown.

View Article and Find Full Text PDF

Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility.

View Article and Find Full Text PDF

ErbB2 (or HER2) is a receptor tyrosine kinase overexpressed in some breast cancers and associated with poor prognosis. Treatments targeting the receptor extracellular and kinase domains have greatly improved disease outcome in the last 20 years. In parallel, the structures of these domains have been described, enabling better mechanistic understanding of the receptor function and targeted inhibition.

View Article and Find Full Text PDF

Transactive response DNA and RNA binding protein 43 kDa (TDP-43) is a highly conserved heterogeneous nuclear ribonucleoprotein (hnRNP), which is involved in several steps of protein production including transcription and splicing. Its aggregates are frequently observed in motor neurons from amyotrophic lateral sclerosis patients and in the most common variant of frontotemporal lobar degeneration. Recently it was shown that TDP-43 is able to bind Zn by its RRM domain.

View Article and Find Full Text PDF

Growth factor receptor-bound 2 (Grb2) is an important link in the receptor tyrosine kinase signaling cascades. It is involved in crucial processes, both physiological (mainly embryogenesis) and pathological (different types of cancer). Several binding partners of all three domains (SH3-SH2-SH3) of this adaptor protein are well described, such as ErbB family members for the SH2 domain and Sos for the SH3 domains.

View Article and Find Full Text PDF

The emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains.

View Article and Find Full Text PDF

A major public health challenge today is the resurgence of microbial infections caused by multidrug-resistant strains. Consequently, novel antimicrobial molecules are actively sought for development. In this context, the human gut microbiome is an under-explored potential trove of valuable natural molecules, such as the ribosomally-synthesized and post-translationally modified peptides (RiPPs).

View Article and Find Full Text PDF

Salmonella is a facultative intracellular pathogen that invades epithelial cells of the intestine using the SPI-1 Type 3 secretion System (T3SS). Insertion of the SPI-1 T3SS translocon is facilitated by acylation of the translocator SipB, which involves a protein-protein interaction with the acyl carrier protein IacP. Using nuclear magnetic resonance and biological tests, we identified the residues of IacP that are involved in the interaction with SipB.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) is a multiprotein complex used by bacteria to deliver effectors into target cells. The T6SS comprises a bacteriophage-like contractile tail structure anchored to the cell envelope by a membrane complex constituted of the TssJ outer-membrane lipoprotein and the TssL and TssM inner-membrane proteins. TssJ establishes contact with the periplasmic domain of TssM whereas the transmembrane segments of TssM and its cytoplasmic domain interact with TssL.

View Article and Find Full Text PDF

ErbB2 (or HER2) is a receptor tyrosine kinase that is involved in signaling pathways controlling cell division, motility and apoptosis. Though important in development and cell growth homeostasis, this protein, when overexpressed, participates in triggering aggressive HER2+ breast cancers. It is composed of an extracellular part and a transmembrane domain, both important for activation by dimerization, and a cytosolic tyrosine kinase, which activates its intrinsically disordered C-terminal end (CtErbB2).

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections and has developed resistance mechanisms due to its ability to promote biofilm formation and evade host adaptive immune responses. Here, we investigate the functional role of the periplasmic detector domain (GacS) from the membrane-bound GacS histidine kinase, which is one of the key players for biofilm formation and coordination of bacterial lifestyles. A gacS mutant devoid of the periplasmic detector domain is severely defective in biofilm formation.

View Article and Find Full Text PDF

is a natural inhabitant of aquatic environments and converts to a pathogen upon infection by a filamentous phage, CTXΦ, that transmits the cholera toxin-encoding genes. This toxigenic conversion of has evident implication in both genome plasticity and epidemic risk, but the early stages of the infection have not been thoroughly studied. CTXΦ transit across the bacterial periplasm requires binding between the minor coat protein named pIII and a bacterial inner-membrane receptor, TolA, which is part of the conserved Tol-Pal molecular motor.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen. It can infect vulnerable patients such as those with cystic fibrosis or hospitalized in intensive care units where it is responsible for both acute and chronic infection. The switch between these infections is controlled by a complex regulatory system involving the central GacS/GacA two-component system that activates the production of two small non-coding RNAs.

View Article and Find Full Text PDF

Vibrio cholerae is the bacterial causative agent of the human disease cholera. Non-pathogenic bacterium can be converted to pathogenic following infection by a filamentous phage, CTXΦ, that carries the cholera toxin encoding genes. A crucial step during phage infection requires a direct interaction between the CTXΦ minor coat protein (pIII(CTX)) and the C-terminal domain of V.

View Article and Find Full Text PDF

Galectins are glycan-binding proteins involved in various biological processes including cell/cell interactions. During B-cell development, bone marrow stromal cells secreting galectin-1 (GAL1) constitute a specific niche for pre-BII cells. Besides binding glycans, GAL1 is also a pre-B cell receptor (pre-BCR) ligand that induces receptor clustering, the first checkpoint of B-cell differentiation.

View Article and Find Full Text PDF

Human Galectin-3 is found in the nucleus, the cytoplasm and at the cell surface. This lectin is constituted of two domains: an unfolded N-terminal domain and a C-terminal Carbohydrate Recognition Domain (CRD). There are still uncertainties about the relationship between the quaternary structure of Galectin-3 and its carbohydrate binding properties.

View Article and Find Full Text PDF

Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix.

View Article and Find Full Text PDF

Galectin-1 (GAL1) is a pre-B cell receptor (pre-BCR) ligand that induces pre-BCR clustering and leads to efficient pre-B cell proliferation and differentiation in the bone marrow. To study pre-BCR-GAL1 interactions and its functional consequence on the early steps of the B cell development, we combine structural nuclear magnetic resonance (NMR) approaches and B cell biology techniques. NMR is applied to identify the residues involved in pre-BCR-GAL1 interactions by monitoring chemical shift perturbations when the complex is formed.

View Article and Find Full Text PDF

Overexpression of the ErbB2 receptor tyrosine kinase is associated with most aggressive tumors in breast cancer patients and is thus one of the main investigated therapeutic targets. Human ErbB2 C-terminal domain is an unstructured anchor that recruits specific adaptors for signaling cascades resulting in cell growth, differentiation and migration. Herein, we report the presence of a SH3 binding motif in the proline rich unfolded ErbB2 C-terminal region.

View Article and Find Full Text PDF

The gram-negative organism Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of hospital-acquired infections. In P. aeruginosa PAO1, three cytoplasmic thioredoxins have been identified.

View Article and Find Full Text PDF

During B cell differentiation in the bone marrow, the expression and activation of the pre-B cell receptor (pre-BCR) constitute crucial checkpoints for B cell development. Both constitutive and ligand-dependent pre-BCR activation modes have been described. The pre-BCR constitutes an immunoglobulin heavy chain (Igμ) and a surrogate light chain composed of the invariant λ5 and VpreB proteins.

View Article and Find Full Text PDF

Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity.

View Article and Find Full Text PDF

Tyrosine phosphorylations are essential in signal transduction. Recently, a new type of phosphotyrosine binding protein, MEMO (Mediator of ErbB2-driven cell motility), has been reported to bind specifically to an ErbB2-derived phosphorylated peptide encompassing Tyr-1227 (PYD). Structural and functional analyses of variants of this peptide revealed the minimum sequence required for MEMO recognition.

View Article and Find Full Text PDF