Background: The effects of α and ß adrenergic receptor modulation on the risk of developing heart failure (HF) remains uncertain due to a lack of randomized controlled trials. This study aimed to estimate the effects of α and ß adrenergic receptors modulation on the risk of HF and to provide proof of principle for genetic target validation studies in HF.
Methods: Genetic variants within the cis regions encoding the adrenergic receptors α1A, α2B, ß1, and ß2 associated with blood pressure in a 757,601-participant genome-wide association study (GWAS) were selected as instruments to perform a drug target Mendelian randomization study.
MicroRNA (miRNA) inhibition is a promising therapeutic strategy in several disease indications. MRG-110 is a locked nucleic acid-based antisense oligonucleotide that targets miR-92a-3p and experimentally was shown to have documented therapeutic effects on cardiovascular disease and wound healing. To gain first insights into the activity of anti-miR-92a in humans, we investigated miR-92a-3p expression in several blood compartments and assessed the effect of MRG-110 on target derepression.
View Article and Find Full Text PDFBackground: Heart rate (HR) at admission in patients with acute heart failure (AHF) has been shown to be an important risk marker of in-hospital mortality. However, its relation with mid and long-term prognosis as well as the impact of Ejection Fraction (EF) is unknown. Our objective was to study the relationship between long-term survival and HR at admission depending on EF in a cohort of patients hospitalized for AHF.
View Article and Find Full Text PDFObjective: Limb-girdle muscular dystophy 2A (LGMD2A, OMIM) is a slowly progressive myopathy caused by the deficiency in calpain 3, a calcium-dependent cysteine protease of the skeletal muscle.
Methods: In this study, we carried out an observational study of clinical manifestations and disease progression in genetically confirmed LGMD2A patients for up to 4 years. A total of 85 patients, aged 14-65 years, were recruited in three centers located in metropolitan France, the Basque country, and the Reunion Island.
Limb-girdle muscular dystrophy 2D (LGMD2D) is an inherited myogenic disorder belonging to the group of muscular dystrophies. Sgca-null mouse is a knock-out model of LGMD2D. Little is known about cardiac phenotype characterization in this model at different ages.
View Article and Find Full Text PDFObjectives: Duchenne muscular dystrophy is an X-linked neuromuscular disorder. The heart is traditionally involved, leading to heart failure. The mdx mouse is a natural animal model of the disease.
View Article and Find Full Text PDFAs a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety.
View Article and Find Full Text PDFDuchenne muscular dystrophy, a genetic disease caused by the absence of functional dystrophin, remains without adequate treatment. Although great hopes are attached to gene and cell therapies, identification of active small molecules remains a valid option for new treatments. We have studied the effect of 20 approved pharmaceutical compounds on the muscles of dystrophin-deficient mdx5Cv mice.
View Article and Find Full Text PDFDeficiency of the dysferlin protein presents as two major clinical phenotypes: limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Dysferlin is known to participate in membrane repair, providing a potential hypothesis to the underlying pathophysiology of these diseases. The size of the dysferlin cDNA prevents its direct incorporation into an adeno-associated virus (AAV) vector for therapeutic gene transfer into muscle.
View Article and Find Full Text PDFAlthough acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation.
View Article and Find Full Text PDFMyotubular myopathy (XLMTM, OMIM 310400) is a severe congenital muscular disease due to mutations in the myotubularin gene (MTM1) and characterized by the presence of small myofibers with frequent occurrence of central nuclei. Myotubularin is a ubiquitously expressed phosphoinositide phosphatase with a muscle-specific role in man and mouse that is poorly understood. No specific treatment exists to date for patients with myotubular myopathy.
View Article and Find Full Text PDFα-Sarcoglycanopathy (limb-girdle muscular dystrophy type 2D, LGMD2D) is a recessive muscular disorder caused by deficiency in α-sarcoglycan, a transmembrane protein part of the dystrophin-associated complex. To date, no treatment exists for this disease. We constructed recombinant pseudotype-1 adeno-associated virus (rAAV) vectors expressing the human α-sarcoglycan cDNA from a ubiquitous or a muscle-specific promoter.
View Article and Find Full Text PDFalpha-Sarcoglycanopathy (limb-girdle muscular dystrophy type 2D, LGMD2D) is a recessive muscular disorder caused by deficiency in alpha-sarcoglycan, a transmembrane protein part of the dystrophin-associated complex. To date, no treatment exists for this disease. We constructed recombinant pseudotype-1 adeno-associated virus (rAAV) vectors expressing the human alpha-sarcoglycan cDNA from a ubiquitous or a muscle-specific promoter.
View Article and Find Full Text PDFCalpainopathy (limb-girdle muscular dystrophy type 2A, LGMD2A) is a recessive muscular disorder caused by deficiency in the calcium-dependent cysteine protease calpain 3. To date, no treatment exists for this disease. We evaluated the potential of recombinant adeno-associated virus (rAAV) vectors for gene therapy in a murine model for LGMD2A.
View Article and Find Full Text PDFMost mutations in the dystrophin gene create a frameshift or a stop in the mRNA and are associated with severe Duchenne muscular dystrophy. Exon skipping that naturally occurs at low frequency sometimes eliminates the mutation and leads to the production of a rescued protein. We have achieved persistent exon skipping that removes the mutated exon on the dystrophin messenger mRNA of the mdx mouse, by a single administration of an AAV vector expressing antisense sequences linked to a modified U7 small nuclear RNA.
View Article and Find Full Text PDFDefects in human calpain 3 are responsible for limb-girdle muscular dystrophy type 2A, an autosomal-recessive disorder characterized mainly by late-onset proximal muscular atrophy. A corresponding murine model has previously been generated by gene targeting. In this report, muscular activity of calpain 3-deficient (capn3(-/-)) mice was evaluated at different ages.
View Article and Find Full Text PDFThis report describes the characterisation of the expression profile of several myogenic determination genes during human embryogenesis. The data were obtained from axial structures and limb buds of human embryos aged between 3 and 8 weeks of development. Using in situ hybridisation to detect Pax3 and MyoD gene family mRNAs, and immunochemistry to follow Six and Eya protein accumulation, we have been able to establish the chronology of accumulation of these gene products.
View Article and Find Full Text PDF