Publications by authors named "Francoise Fayolle-Guichard"

Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step.

View Article and Find Full Text PDF

A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified.

View Article and Find Full Text PDF

The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment.

View Article and Find Full Text PDF

Ethyl tert-butyl ether (ETBE) enrichment was obtained by adding contaminated groundwater to a mineral medium containing ETBE as the sole carbon and energy source. ETBE was completely degraded to biomass and CO2 with a transient production of tert-butanol (TBA) and a final biomass yield of 0.37 ± 0.

View Article and Find Full Text PDF

Ethyl tert-butyl ether (ETBE) was detected at high concentration (300mgL(-1)) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.

View Article and Find Full Text PDF

The degradation of fuel oxygenates [methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME)] by Rhodococcus ruber IFP 2001, Rhodococcus zopfii IFP 2005 and Gordonia sp. IFP 2009 (formerly Mycobacterium sp.) isolated from different environments was compared.

View Article and Find Full Text PDF

Two strains, identified as Rhodococcus wratislaviensis IFP 2016 and Rhodococcus aetherivorans IFP 2017, were isolated from a microbial consortium that degraded 15 petroleum compounds or additives when provided in a mixture containing 16 compounds (benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, octane, hexadecane, 2,2,4-trimethylpentane [isooctane], cyclohexane, cyclohexanol, naphthalene, methyl tert-butyl ether [MTBE], ethyl tert-butyl ether [ETBE], tert-butyl alcohol [TBA], and 2-ethylhexyl nitrate [2-EHN]). The strains had broad degradation capacities toward the compounds, including the more recalcitrant ones, MTBE, ETBE, isooctane, cyclohexane, and 2-EHN. R.

View Article and Find Full Text PDF

Mycobacterium austroafricanum IFP 2012 is able to slowly grow on methyl tert-butyl ether (MTBE), a fuel oxygenate widely used as a gasoline additive. The potential of M. austroafricanum IFP 2012 for aerobic MTBE degradation was investigated in the presence of a secondary carbon source, isopropanol.

View Article and Find Full Text PDF

Strains L10(T), L108 and CIP I-2052 were originally obtained from methyl tert-butyl ether (MTBE)-contaminated groundwater and from a wastewater treatment plant, respectively. All share the ability to grow on tert-butanol, an intermediate of MTBE degradation. Cells are strictly aerobic, motile by a polar flagellum and exhibit strong pili formation.

View Article and Find Full Text PDF

Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB.

View Article and Find Full Text PDF

Fuel oxygenates, mainly methyl tert-butyl ether (MTBE) but also ethyl tert-butyl ether (ETBE), are added to gasoline in replacement of lead tetraethyl to enhance its octane index. Their addition also improves the combustion efficiency and therefore decreases the emission of pollutants (CO and hydrocarbons). On the other hand, MTBE, being highly soluble in water and recalcitrant to biodegradation, is a major pollutant of water in aquifers contaminated by MTBE-supplemented gasoline during accidental release.

View Article and Find Full Text PDF

Methyl tert-butyl ether (MTBE) is a persistent pollutant of surface and groundwater, and the reasons for its low biodegradability are poorly documented. Using one of the rare bacterial strains able to grow in the presence of MTBE, Mycobacterium austroafricanum IFP 2012, the protein profiles of crude extracts after growth in the presence of MTBE and glucose were compared by SDS-PAGE. Ten proteins with molecular masses of 67, 64, 63, 55, 50, 27, 24, 17, 14 and 11 kDa were induced after growth in the presence of MTBE.

View Article and Find Full Text PDF

A new Mycobacterium austroafricanum strain, IFP 2015, growing on methyl tert-butyl ether (MTBE) as a sole carbon source was isolated from an MTBE-degrading microcosm inoculated with drain water of an MTBE-supplemented gasoline storage tank. M. austroafricanum IFP 2015 was able to grow on tert-butyl formate, tert-butyl alcohol (TBA) and alpha-hydroxyisobutyrate.

View Article and Find Full Text PDF