Nucleic acid photolithography is the only microarray fabrication process that has demonstrated chemical versatility accommodating any type of nucleic acid. The current approach to RNA microarray synthesis requires long coupling and photolysis times and suffers from unavoidable degradation postsynthesis. In this study, we developed a series of RNA phosphoramidites with improved chemical and photochemical protection of the 2'- and 5'-OH functions.
View Article and Find Full Text PDFRNA cap methylations have been shown to be crucial for the life cycle, replication, and infection of ssRNA viruses, as well as for evading the host's innate immune system. Viral methyltransferases (MTases) therefore represent an attractive target for the development of compounds as tools and inhibitors. In coronaviruses, 7-methyltransferase function is localized in nsp14, which has become an increasingly important therapeutic target with the COVID-19 pandemic.
View Article and Find Full Text PDFViral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases.
View Article and Find Full Text PDFGiven the importance of mRNA with 5'-cap, easy access to RNA substrates with different G caps, of high quality and in large quantities is essential to elucidate the roles of RNA and the regulation of underlying processes. In addition to existing synthetic routes to 5'-cap RNA based on enzymatic, chemical or chemo-enzymatic methods, we present here an all-chemical method for synthetic RNA capping. The novelty of this study lies in the fact that the capping reaction is performed on solid-support after automated RNA assembly using commercial 2'-O-propionyloxymethyl ribonucleoside phosphoramidites, which enable final RNA deprotection under mild conditions while preserving both G-cap and RNA integrity.
View Article and Find Full Text PDFThe COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity.
View Article and Find Full Text PDFAT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5.
View Article and Find Full Text PDFRNA 2'O-methylation is a 'self' epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2'O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2'O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20).
View Article and Find Full Text PDFThe order Nidovirales is a diverse group of (+)RNA viruses, with a common genome organization and conserved set of replicative and editing enzymes. In particular, RNA methyltransferases play a central role in mRNA stability and immune escape. However, their presence and distribution in different Nidovirales families is not homogeneous.
View Article and Find Full Text PDF-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the -acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of -acylsulfonamide analogues.
View Article and Find Full Text PDFRespiratory syncytial virus has a negative-sense single-stranded RNA genome constitutively encapsidated by the viral nucleoprotein N, forming a helical nucleocapsid which is the template for viral transcription and replication by the viral polymerase L. Recruitment of L onto the nucleocapsid depends on the viral phosphoprotein P, which is an essential L cofactor. A prerequisite for genome and antigenome encapsidation is the presence of the monomeric, RNA-free, neosynthesized N protein, named N.
View Article and Find Full Text PDFEnzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (7-guanine)-methyltransferase (7-MTase) that catalyzes the transfer of the methyl group from the -adenosyl-l-methionine (SAM) cofactor to the 7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the 7-MTase nsp14.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a negative sense single-stranded RNA virus and one of the main causes of severe lower respiratory tract infections in infants and young children. RSV RNA replication/transcription and capping are ensured by the viral Large (L) protein. The L protein contains a polymerase domain associated with a polyribonucleotidyl transferase domain in its N-terminus, and a methyltransferase (MTase) domain followed by the C-terminal domain (CTD) enriched in basic amino acids at its C-terminus.
View Article and Find Full Text PDFCancer stem cells (CSCs) are a small but critical cell population for cancer biology since they display inherent resistance to standard therapies and give rise to metastases. Despite accruing evidence establishing a link between deregulation of epitranscriptome-related players and tumorigenic process, the role of messenger RNA (mRNA) modifications in the regulation of CSC properties remains poorly understood. Here, we show that the cytoplasmic pool of fat mass and obesity-associated protein (FTO) impedes CSC abilities in colorectal cancer through its N,2'-O-dimethyladenosine (mA) demethylase activity.
View Article and Find Full Text PDFThe Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide.
View Article and Find Full Text PDFThe spreading of new viruses is known to provoke global human health threat. The current COVID-19 pandemic caused by the recently emerged coronavirus SARS-CoV-2 is one significant and unfortunate example of what the world will have to face in the future with emerging viruses in absence of appropriate treatment. The discovery of potent and specific antiviral inhibitors and/or vaccines to fight these massive outbreaks is an urgent research priority.
View Article and Find Full Text PDFCo-delivery systems of siRNA and chemotherapeutic drugs have been developed as an attractive strategy to optimize the efficacy of chemotherapy towards cancer cells with multidrug resistance. In these typical systems, siRNAs are usually associated to drugs within a carrier but without covalent interactions with the risk of a premature release and degradation of the drugs inside the cells. To address this issue, we propose a covalent approach to co-deliver a siRNA-drug conjugate with a redox-responsive self-immolative linker prone to intracellular glutathione-mediated disulfide cleavage.
View Article and Find Full Text PDFThe large (L) protein of Ebola virus is a key protein for virus replication. Its N-terminal region harbors the RNA-dependent RNA polymerase activity, and its C terminus contains a cap assembling line composed of a capping domain and a methyltransferase domain (MTase) followed by a C-terminal domain (CTD) of unknown function. The L protein MTase catalyzes methylation at the 2'-O and N-7 positions of the cap structures.
View Article and Find Full Text PDFmRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N-methyladenosine (mA), found within mRNAs, and N,2'-O-dimethyladenosine (mAm), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult.
View Article and Find Full Text PDFSmall nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. Here we show that snRNAs contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m and m, reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m isoform with a single-methylated adenosine (2'-O-methyladenosine, Am), which is then converted to a dimethylated m isoform (N,2'-O-dimethyladenosine, mAm).
View Article and Find Full Text PDFEukaryotic RNAs are heavily processed, including co- and post-transcriptional formation of various 5' caps. In small nuclear RNAs (snRNAs) or small nucleolar RNAs (snoRNAs), the canonical G cap is hypermethylated at the N -position, whereas in higher eukaryotes and viruses 2'-O-methylation of the first transcribed nucleotide yields the cap1 structure. The function and potential dynamics of several RNA cap modifications have not been fully elucidated, which necessitates preparative access to these caps.
View Article and Find Full Text PDFMononegaviruses, such as Ebola virus, encode an L (large) protein that bears all the catalytic activities for replication/transcription and RNA capping. The C-terminal conserved region VI (CRVI) of L protein contains a K-D-K-E catalytic tetrad typical for 2'O methyltransferases (MTase). In mononegaviruses, cap-MTase activities have been involved in the 2'O methylation and N7 methylation of the RNA cap structure.
View Article and Find Full Text PDFModified oligoribonucleotides used as siRNAs bearing biolabile disulfide-containing groups at some 2'-positions were synthesized following a post-synthesis transformation of solid-supported 2'-O-acetylthiomethyl RNA, previously described. Thus, the reduction-responsive and lipophilic benzyldithiomethyl (BnSSM) modification was introduced at different locations into siRNAs targeting the Ewing sarcoma EWS-Fli1 protein. Thermal stability, serum stability and response to glutathione treatment of modified siRNAs were thoroughly investigated.
View Article and Find Full Text PDFThe synthesis and the impact of a disulfide bridge between 2'-O-positions of two adjacent nucleotides in an RNA duplex and in the loop of RNA hairpins are reported. The incorporation of this 2',2'-disulfide (S-S) bridge enabled thermal and enzymatic stabilization of the hairpin depending on its position in the loop. The influence of the disulfide bridge on RNA folding was studied at the HIV Dimerization Initiation Site (DIS) as an RNA sequence model.
View Article and Find Full Text PDF