Publications by authors named "Francoise Caralp"

The rate coefficient, (), for the gas-phase reaction between OH radicals and acetone CHC(O)CH, has been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique ( = 11.7-64.4 K).

View Article and Find Full Text PDF

The gas phase reaction of the hydroxyl radical with allene has been studied theoretically and experimentally in a continuous supersonic flow reactor over the range 50 ≤ T/K ≤ 224. This reaction has been found to exhibit a negative temperature dependence over the entire temperature range investigated, varying between (0.75 and 5.

View Article and Find Full Text PDF

Products of the reaction of OH radicals with propene, trans-2-butene, and 1-butene have been investigated in a fast flow reactor, coupled with time-of-flight mass spectrometry, at pressures between 0.8 and 3.0 Torr.

View Article and Find Full Text PDF

Reactions of the hydroxyl radical with propene and 1-butene are studied experimentally in the gas phase in a continuous supersonic flow reactor over the range 50≤T/K≤224. OH radicals are produced by pulsed laser photolysis of H(2)O(2) at 266 nm in the supersonic flow and followed by laser-induced fluorescence in the (1, 0) A(2)Σ(+)←X(2)Π(3/2) band at about 282 nm. These reactions are found to exhibit negative temperature dependences over the entire temperature range investigated, varying between (3.

View Article and Find Full Text PDF

Under atmospheric conditions, experiments show that 2-butoxy radicals in the presence of oxygen yield acetaldehyde and butanone such that the concentration ratio [acetaldehyde] [O2]/[butanone] shows a linear dependence on oxygen concentration [O2]. [Zabel et al., Phys.

View Article and Find Full Text PDF

The reactions of the CH radical with several alkanes were studied, at room temperature, in a low-pressure fast-flow reactor. CH(X2Pi, v = 0) radicals were obtained from the reaction of CHBr(3) with potassium atoms. The overall rate constants at 300 K are (0.

View Article and Find Full Text PDF

Based on recent detailed quantum mechanical computations of the mechanism of the title reaction and, this paper presents kinetics analysis of the overall rate constant and its temperature dependence, for which ample experimental data are available for comparison. The analysis confirms that the principal channel is the formation of acetonyl radical + H(2)O, while the channel leading to acetic acid is of negligible importance. It is shown that the unusual temperature dependence of the overall rate constant, as observed experimentally, is well accounted for by standard RRKM treatment that includes tunneling.

View Article and Find Full Text PDF