Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera.
View Article and Find Full Text PDFBiological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method.
View Article and Find Full Text PDFDeciphering protein-protein interactions (PPIs) in vivo is crucial to understand protein function. Bimolecular fluorescence complementation (BiFC) makes applicable the analysis of PPIs in many different native contexts, including human live cells. It relies on the property of monomeric fluorescent proteins to be reconstituted from two separate subfragments upon spatial proximity.
View Article and Find Full Text PDFDental pain arises from exposed dentin following bacterial, chemical, or mechanical erosion of enamel and/or recession of gingiva. Thus, dentin tissue and more specifically patent dentinal tubules represent the first structure involved in dentin sensitivity. Interestingly, the architecture of dentin could allow for the transfer of information to the underlying dental pulp via odontoblasts (dentin-forming cells), via their apical extension bathed in the dentinal fluid running in the tubules, or via a dense network of trigeminal sensory axons intimately related to odontoblasts.
View Article and Find Full Text PDFRecent studies have suggested that odontoblasts are involved in the dental pulp immune response to oral pathogens that invade human dentin during the caries process. How odontoblasts regulate the early inflammatory and immune pulp response to Gram-positive bacteria, which predominate in shallow and moderate dentin caries, is still poorly understood. In this study, we investigated the production of pro- and anti-inflammatory cytokines by odontoblast-like cells upon engagement of Toll-like receptor (TLR) 2, a pattern recognition molecule activated by Gram-positive bacteria components.
View Article and Find Full Text PDFImmunobiology
May 2010
J Exp Zool B Mol Dev Evol
July 2009
Odontoblasts are organized as a single layer of specialized cells responsible for dentine formation and presumably for playing a role in tooth pain transmission. Each cell has an extension running into a dentinal tubule and bathing in the dentinal fluid. A dense network of sensory unmyelinated nerve fibers surrounds the cell bodies and processes.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
July 2009