The 1,2,4-trioxolane antimalarial drug, OZ439 (artefenomel), exhibits cross-resistance to artemisinins with similar survival rates of artemisinin-resistant parasites after dihydroartemisinin or OZ439 exposure, suggesting that this drug shares some mechanisms of action with artemisinins. In this way, we investigated the reductive activation of OZ439 by heme in the presence of dithionite, demonstrating the formation of covalent heme-drug adducts. However, in the presence of the biologically abundant reductant glutathione instead of dithionite, heme-drug adducts were not detected, contrary to artemisinin that efficiently alkylates heme regardless of the reductant used.
View Article and Find Full Text PDFEmergence and spread of parasite resistance to artemisinins, the first-line antimalarial therapy, threaten the malaria eradication policy. To identify therapeutic targets to eliminate artemisinin-resistant parasites, the functioning of the apicoplast and the mitochondrion was studied, focusing on the fatty acid synthesis type II (FASII) pathway in the apicoplast and the electron transfer chain in the mitochondrion. A significant enrichment of the FASII pathway among the up-regulated genes in artemisinin-resistant parasites under dihydroartemisinin treatment was found, in agreement with published transcriptomic data.
View Article and Find Full Text PDFBackground: Ganaplacide, also known as KAF156, is among the new antimalarial drug candidates that have successfully reached Phase III clinical trials, and is proposed in combination with lumefantrine. This combination could replace the current front-line artemisinin-based combination therapies (ACTs) in case of Plasmodium falciparum resistance to both artemisinins and partner drugs. Indeed, the African continent, where the malaria burden is the highest, is currently experiencing worrying multiple emergences and spread of artemisinin resistance, which urges for the exploration of the antiparasitic properties of KAF156 in this context.
View Article and Find Full Text PDFThe expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents of schistosomiasis. Indeed, the peptide tag of the hybrid compounds can be hydrolyzed by worm's digestive enzymes to afford a highly labile alkoxyamine which homolyzes spontaneously and instantaneously into radicals-which are then used as a drug against Schistosome adult parasites.
View Article and Find Full Text PDFIn response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA.
View Article and Find Full Text PDFThe emergence and spread of drug-resistant parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against .
View Article and Find Full Text PDFOver the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets.
View Article and Find Full Text PDFThe use of artemisinin and its derivatives has helped reduce the burden of malaria caused by However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner drugs leading to a secondary drug resistance and thus threatens malaria eradication strategies. Drugs targeting epigenetic mechanisms (namely epidrugs) are emerging as potential antimalarial drugs.
View Article and Find Full Text PDFSince the Covid-19 epidemic, it has been clear that the availability of small and affordable drugs that are able to efficiently control viral infections in humans is still a challenge in medicinal chemistry. The synthesis and biological activities of a series of hybrid molecules that combine an emodin moiety and other structural moieties expected to act as possible synergistic pharmacophores in a single molecule were studied. Emodin has been reported to block the entry of the SARS-CoV-2 virus into human cells and might also inhibit cytokine production, resulting in the reduction of pulmonary injury induced by SARS-CoV-2.
View Article and Find Full Text PDFThe first effective synthetic approach to naphthofuroquinones via a reaction involving lawsone, various aldehydes, and three isocyanides under microwave irradiation afforded derivatives in moderate to good yields. In addition, for less-reactive aldehydes, two naphtho-enaminodione quinones were obtained for the first time, as result of condensation between lawsone and isocyanides. X-ray structure determination for and 2D-NMR spectra of confirmed the obtained structures.
View Article and Find Full Text PDFThe currently spreading resistance of the malaria parasite Plasmodium falciparum to artemisinin-based combination therapies makes an urgent need for new efficient drugs. Aiming to kill artemisinin-resistant Plasmodium, a series of novel hybrid drugs named Atokels were synthesized and characterized. Atokels are based on an 8-amino- or 8-hydroxyquinoline entity covalently bound to a 1,4-naphthoquinone through a polyamine linker.
View Article and Find Full Text PDFArtemisinin-based Combination Therapies (ACTs) are currently the frontline treatment against malaria, but parasite resistance to artemisinin (ART) and its derivatives, core components of ACTs, is spreading in the Mekong countries. In this study, we report the synthesis of several novel artemisinin derivatives and evaluate their in vitro and in silico capacity to counteract artemisinin resistance. Furthermore, recognizing that the malaria parasite devotes considerable resources to minimizing the oxidative stress that it creates during its rapid consumption of hemoglobin and the release of heme, we sought to explore whether further augmentation of this oxidative toxicity might constitute an important addition to artemisinins.
View Article and Find Full Text PDFSeveral measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities.
View Article and Find Full Text PDFHuman malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity.
View Article and Find Full Text PDFPartial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum () gene. Here, we carried out selection over a 1-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen.
View Article and Find Full Text PDFThe malaria parasite harbors a relict plastid called the apicoplast. Although not photosynthetic, the apicoplast retains unusual, non-mammalian metabolic pathways that are essential to the parasite, opening up a new perspective for the development of novel antimalarials which display a new mechanism of action. Based on the previous antiplasmodial hit-molecules identified in the 2-trichloromethylquinoxaline series, we report herein a structure-activity relationship (SAR) study at position two of the quinoxaline ring by synthesizing 20 new compounds.
View Article and Find Full Text PDFMalaria remains a major public health disease due to its high yearly mortality and morbidity. Resistance to the gold standard drug, artemisinin, is worrisome and needs better understanding in order to be overcome. In this work, we sought to study whether redox processes are involved in artemisinin resistance.
View Article and Find Full Text PDFUnderstanding the mode of action of antimalarials is central to optimizing their use and the discovery of new therapeutics. Currently used antimalarials belong to a limited series of chemical structures and their mechanisms of action are coutinuously debated. Whereas the involvement of reactive species that in turn kill the parasites sensitive to oxidative stress, is accepted for artemisinins, little is known about the generation of such species in the case of quinolines or hydroxynaphtoquinone.
View Article and Find Full Text PDFMalaria is still considered as the major parasitic disease and the development of artemisinin resistance does not improve this alarming situation. Based on the recent identification of relevant malaria targets in the artemisinin resistance context, novel drug combinations were evaluated against artemisinin-sensitive and artemisinin-resistant Plasmodium falciparum parasites. Corresponding hybrid molecules were also synthesized and evaluated for comparison with combinations and individual pharmacophores (e.
View Article and Find Full Text PDFMalaria and schistosomiasis are major infectious causes of morbidity and mortality in the tropical and sub-tropical areas. Due to the widespread drug resistance of the parasites, the availability of new efficient and affordable drugs for these endemic pathologies is now a critical public health issue. In this study, we report the design, the synthesis and the preliminary biological evaluation of a series of alkoxyamine derivatives as potential drugs against and parasites.
View Article and Find Full Text PDFBackground: Quiescence is an unconventional mechanism of Plasmodium survival, mediating artemisinin resistance. This phenomenon increases the risk of clinical failures following artemisinin-based combination therapies (ACTs) by slowing parasite clearance and allowing the selection of parasites resistant to partner drugs.
Objectives: To thwart this multiresistance, the quiescent state of artemisinin-resistant parasites must be taken into consideration from the very early stages of the drug discovery process.
The emergence of parasites, responsible for malaria disease, resistant to antiplasmodial drugs including the artemisinins, represents a major threat to public health. Therefore, the development of new antimalarial drugs or combinations is urgently required. In this context, several hybrid molecules combining a dihydroartemisinin derivative and gold(I) N-heterocyclic carbene (NHC) complexes have been synthesized based on the different modes of action of the two compounds.
View Article and Find Full Text PDFRed blood cells are constantly exposed to reactive species under physiological or pathological conditions or during administration of xenobiotics. Regardless of the source, its accurate quantification is paramount in the area of theragnostics, which had been elusive up until now. Even if there are a lot of approaches to evaluate the oxidative stress, very sensitive methods are missing for the blood system.
View Article and Find Full Text PDF