Our work aimed at evaluating the use of permeability glycoprotein (P-gp) inhibiting nanoparticles (NPs) as a part of a suitable oral solid dosage to improve bioavailability. Famotidine (Pepcid), a stomach acid production inhibitor, was used as a drug model to test our hypothesis. Famotidine-loaded NPs were prepared by solvent emulsion evaporation using PEG grafted on a polylactide acid (PLA) polymer backbone (PLA-g-PEG), with a 5% molar ratio of PEG versus lactic acid monomer and PEG of either 750 or 2000 Da molecular weight.
View Article and Find Full Text PDFThis work evaluates and interprets underlying mechanisms behind various aspects related to preparation and physical characteristics of polymeric nanoparticles (NP). These were prepared from different biodegradable polymers according to a water-in-oil-in-water emulsion solvent evaporation method. Polymers used were poly(lactic-co-glycolic) acid (PLGA), poly (lactic acid) (PLA), (PLA-PEG-PLA) triblock and (PLA-PEG-PLA)n multi-block co-polymers.
View Article and Find Full Text PDFPurpose: To compare the physical and physicochemical characteristics of carbamazepine microparticles prepared using two different methods: (1) the rapid expansion of supercritical solutions (RESS) and (2) the spray-drying process.
Methods: For both processes, microparticles were produced over a range of different temperatures (35 to 100 degrees C). For the RESS method, carbon dioxide was the solvent used over a pressure range of 2500 to 3500 psi.