We present the results of an optical link to a corner cube on board a tethered balloon at 300 m altitude including a Tip/Tilt compensation for the balloon tracking. Our experiment measures the carrier phase of a 1542 nm laser, which is the useful signal for frequency comparison of distant clocks. An active phase noise compensation of the carrier is implemented, demonstrating a fractional frequency stability of 8 × 10 after 16 s averaging, which slightly (factor ∼ 3) improves on best previous links via an airborne platform.
View Article and Find Full Text PDFTimescale comparison between optical atomic clocks over ground-to-space and terrestrial free-space laser links will have enormous benefits for fundamental and applied sciences. However, atmospheric turbulence creates phase noise and beam wander that degrade the measurement precision. Here we report on phase-stabilized optical frequency transfer over a 265 m horizontal point-to-point free-space link between optical terminals with active tip-tilt mirrors to suppress beam wander, in a compact, human-portable set-up.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2018
In this paper, the phase noise of aluminum nitride (AlN) contour-mode resonators is investigated using a passive measurement system with carrier suppression. The purpose is to make careful measurements of the performance of AlN resonators in order to better understand and clarify previously reported frequency instability in these devices. The resonant frequencies of the resonators are around 220 MHz.
View Article and Find Full Text PDF