Forests are expected to be strongly affected by modifications in climate and disturbance regimes, threatening their ability to sustain the provision of essential services. Promoting drought-tolerant species or functionally diverse stands have recently emerged as management options to cope with global change. Our study aimed at evaluating the impact of contrasting stand-level management scenarios on the resilience of temperate forests in eastern North America and central-western Europe using the individual process-based model HETEROFOR.
View Article and Find Full Text PDFProcess-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development.
View Article and Find Full Text PDFBiological production systems and conservation programs benefit from and should care for evolutionary processes. Developing evolution-oriented strategies requires knowledge of the evolutionary consequences of management across timescales. Here, we used an individual-based demo-genetic modelling approach to study the interactions and feedback between tree thinning, genetic evolution, and forest stand dynamics.
View Article and Find Full Text PDFA growing body of research suggests mixed-species stands are generally more productive than pure stands as well as less sensitive to disturbances. However, these effects of mixture depend on species assemblages and environmental conditions. Here, we present the Salem simulator, a tool that can help forest managers assess the potential benefit of shifting from pure to mixed stands from a productivity perspective.
View Article and Find Full Text PDF