IEEE Trans Ultrason Ferroelectr Freq Control
July 2024
Color Doppler echocardiography enables visualization of blood flow within the heart. However, the limited frame rate impedes the quantitative assessment of blood velocity throughout the cardiac cycle, thereby compromising a comprehensive analysis of ventricular filling. Concurrently, deep learning is demonstrating promising outcomes in post-processing of echocardiographic data for various applications.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2024
Comput Methods Programs Biomed
June 2024
Background And Objective: Computational Ultrasound Imaging (CUI) has become increasingly popular in the medical ultrasound community, facilitated by free simulation software. These tools enable the design and exploration of transmit sequences, transducer arrays, and signal processing. We recently introduced SIMUS, a frequency-based ultrasound simulator within the open-source MUST toolbox, which offers numerical advantages and allows easy consideration of frequency-dependent factors.
View Article and Find Full Text PDFIn a 2021 paper, we delved into the details of delay-sum beamforming (DAS) in high-frame-rate ultrasound for medical imaging [1]. We also proposed a simple and fast method of determining an f-number, which is based on the directivity of the transducer elements. In their comment, Martin F.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2024
With the development of promising cavitation-based treatments, the interest in cavitation monitoring with passive acoustic mapping (PAM) is significantly increasing. While most of studies regarding PAM are performed in 2-D, 3-D imaging modalities are getting more attention relying on either custom-made or commercial matrix probes. Unless specific phased-arrays are used for a specific application, limitations due to probe apertures often results in poor performances of the 3-D mapping, due to the use of a delay-and-sum (DAS) classic beamformer, which results in strong artifacts and large main lobe sizes.
View Article and Find Full Text PDFThe projected transverse angle and the nonprojected intrusion angle can be used to describe the radial orientation of local cardiomyocytes in the left ventricle wall, although to date their descriptive relevance has not been demonstrated. This paper compares the evolution of the transverse angle and the intrusion angle in five left ventricle wall samples, and investigates in more detail their respective behaviors when the nonprojected helical angle varies. We show that the intrusion angle avoids the "projection" effect, and contrary to the transverse angle, it remains stable whatever the values taken by the nonprojected helical angle, even when this approaches 90°.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2023
High-quality ultrafast ultrasound imaging is based on coherent compounding from multiple transmissions of plane waves (PW) or diverging waves (DW). However, compounding results in reduced frame rate, as well as destructive interferences from high-velocity tissue motion if motion compensation (MoCo) is not considered. While many studies have recently shown the interest of deep learning for the reconstruction of high-quality static images from PW or DW, its ability to achieve such performance while maintaining the capability of tracking cardiac motion has yet to be assessed.
View Article and Find Full Text PDFBackground And Objective: Ultrafast Power Doppler (UPD) is a growing ultrasound modality for imaging and diagnosing microvasculature disease. A key element of UPD is using singular value decomposition (SVD) as a highly selective filter for tissue and electronic noise. However, two significant drawbacks of SVD are its computational burden and the complexity of its algorithms.
View Article and Find Full Text PDF. Ultrafast power Doppler (UPD) is an ultrasound method that can image blood flow at several thousands of frames per second. In particular, the high number of data provided by UPD enables the use of singular value decomposition (SVD) as a clutter filter for suppressing tissue signal.
View Article and Find Full Text PDFOrientation of local cardiomyocyte aggregates in the human left ventricle free wall experiences an oscillation in the laminar structure regions, besides its gradual change trend. We described this oscillation using five transmural samples imaged at the European Synchrotron Radiation Facility with an isotropic voxel size of 3.5 × 3.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2022
Background And Objective: Computational ultrasound imaging has become a well-established methodology in the ultrasound community. In the accompanying paper (part I), we described a new ultrasound simulator (SIMUS) for MATLAB, which belongs to the Matlab UltraSound Toolbox (MUST). SIMUS can generate pressure fields and radiofrequency RF signals for simulations in medical ultrasound imaging.
View Article and Find Full Text PDFMost cardiomyocytes in the left ventricle wall are grouped in aggregates of four to five units that are quasi-parallel to each other. When one or more "cardiomyocyte aggregates" are delimited by two cleavage planes, this defines a "sheetlet" that can be considered as a "work unit" that contributes to the thickening of the wall during the cardiac cycle. In this paper, we introduce the skeleton method to measure the local three-dimensional (3D) orientation of cardiomyocyte aggregates in the sheetlets in three steps: data segmentation; extraction of the skeleton of the sheetlets; and calculation of the local orientation of the cardiomyocyte aggregates inside the sheetlets.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2022
In this article, a [Formula: see text] piezoelectric micromachined ultrasonic transducer (PMUT) array is designed and driven with one cycle of a 5-MHz sinusoid at 10 [Formula: see text] for radial artery motion tracking. The transmit and receive performance figure of merit (FOM) of an individual PMUT over operating frequency is modeled and validated using laser Doppler vibrometer (LDV) measurements. Given a fixed cross section, the FOM inversely scales with frequency.
View Article and Find Full Text PDFMultispectral photoacoustic imaging is a powerful noninvasive medical imaging technique that provides access to functional information. In this study, a set of methods is proposed and validated, with experimental multispectral photoacoustic images used to estimate the concentration of chromophores. The unmixing techniques used in this paper consist of two steps: (1) automatic extraction of the reference spectrum of each pure chromophore; and (2) abundance calculation of each pure chromophore from the estimated reference spectra.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2021
Real-time 3-D ultrasound (US) provides a complete visualization of inner body organs and blood vasculature, crucial for diagnosis and treatment of diverse diseases. However, 3-D systems require massive hardware due to the huge number of transducer elements and consequent data size. This increases cost significantly and limit both frame rate and image quality, thus preventing the 3-D US from being common practice in clinics worldwide.
View Article and Find Full Text PDFDelay-and-sum (DAS) is the most widespread digital beamformer in high-frame-rate ultrasound imaging. Its implementation is simple and compatible with real-time applications. In this viewpoint article, we describe the fundamentals of DAS beamforming.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2021
We present an experimental proof-of-concept study on the performance of a sparse segmented annular array for optoacoustic imaging. A capacitive micromachined ultrasonic transducer was equipped with a negatively focused acoustic lens and scanned in an annular fashion to exploit the performance of the sparse array geometry proposed in our recent numerical studies [Biomed. Opt.
View Article and Find Full Text PDFNew thermosensitive liposomes with a phase transition at 42 °C, containing nickel-bis(dithiolene) complexes as efficient and stable photothermal agents, have been formulated and characterized. These liposomes are highly stable and keep their contents at 37 °C for more than 30 days. On the contrary, the mild hyperthermia generated by the nickel-bis(dithiolene) complex under 940 nm NIR irradiation allows for the fine controlled release of the liposome contents, making such liposomes highly suitable for on-demand drug delivery in the human body under NIR laser irradiation.
View Article and Find Full Text PDFThree dimensional ultrasound (3-D US) imaging methods based on 2-D array probes are increasingly investigated. However, the experimental test of new 3-D US approaches is contrasted by the need of controlling very large numbers of probe elements. Although this problem may be overcome by the use of 2-D sparse arrays, just a few experimental results have so far corroborated the validity of this approach.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2018
The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband.
View Article and Find Full Text PDFPhotoacoustic (PA) signals are short ultrasound (US) pulses typically characterized by a single-cycle shape, often referred to as N-shape. The spectral content of such wideband signals ranges from a few hundred kilohertz to several tens of megahertz. Typical reception frequency responses of classical piezoelectric US imaging transducers, based on PZT technology, are not sufficiently broadband to fully preserve the entire information contained in PA signals, which are then filtered, thus limiting PA imaging performance.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2017
Medical systems usually consider linear propagation of ultrasound, an approximation of reality. However, numerous studies have attempted to accurately simulate the nonlinear pressure wave distortion and to evaluate the contribution of harmonic frequencies. In such simulations, the computation time is very large, except for the method based on the angular spectrum scheme where the derivative order is reduced using the Fourier transform.
View Article and Find Full Text PDF