Publications by authors named "Francois Valentin"

The structured report (SR) summarizing the multidisciplinary decision making for referred cancer patient is a new opportunity to ameliorate communication between GPs and cancer specialists. The aim of this study was to investigate how GPs value this structured report. We carried out a questionnaire-audit on SR GPs assessment.

View Article and Find Full Text PDF

Oxidative stress is a cardinal feature of the inflammatory process and is involved in various pathologies including atherosclerosis. One of the important mechanisms in which oxidative stress may play a role is activation of matrix metalloproteinases such as MMP-2, which are involved in plaque destabilization. We investigated the mechanisms by which oxidative stress induces MMP-2 activation in cultured human coronary artery smooth muscle cells.

View Article and Find Full Text PDF

The thromboxane receptor has two alternatively spliced isoforms, alpha and beta, which differ only in sequences within the cytoplasmic C-terminal domain. Oxidative stress induced by H(2)O(2) in a COS-7 cell model results in stabilization of the thromboxane receptor beta isoform by translocation from the endoplasmic reticulum to the Golgi complex, which in turn results in protection of the receptor from degradation. We now report that both the alpha and beta thromboxane receptor isoforms respond identically to oxidative stress.

View Article and Find Full Text PDF

Thromboxane A2 (TXA2) is a key mediator of platelet aggregation and smooth muscle contraction. Its action is mediated by its G protein-coupled receptor of which two isoforms, termed TPalpha and TPbeta, occur in humans. TXA2 has been implicated in pathologies such as cardiovascular diseases, pulmonary embolism, atherosclerosis, and asthma.

View Article and Find Full Text PDF

The 8-iso-prostaglandin F(2alpha), a prostanoid produced in vivo by cyclooxygenase-independent free-radical-catalyzed lipid peroxidation, acts as a partial agonist on the thromboxane receptor (TXA(2)R) and is a potent vasoconstrictor in the oxidatively stressed isolated perfused rat heart. We hypothesized that the response in the isolated heart may be due to augmentation of TXA(2)R density, which may be initiated by the presence of oxidative radicals. Previous studies have shown that TXA(2)R density is increased during atherosclerosis on both the medial and intimal smooth muscle layers in human coronary arteries.

View Article and Find Full Text PDF