Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins.
View Article and Find Full Text PDFPINK1, mutated in familial forms of Parkinson's disease, initiates mitophagy following mitochondrial depolarization. However, it is difficult to monitor this pathway physiologically in mice as loss of PINK1 does not alter basal mitophagy levels in most tissues. To further characterize this pathway , we used -QC mice in which loss of PINK1 was combined with the mitochondrial-associated POLG mutation.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy.
View Article and Find Full Text PDFHow activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Here, we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparative analysis with human iNeuron datasets revealed a subset of 49 PINK1 activation–dependent diGLY sites in 22 proteins conserved across mouse and human systems.
View Article and Find Full Text PDFMuch effort has been devoted to the development of selective inhibitors of the LRRK2 as a potential treatment for LRRK2 driven Parkinson's disease. In this study, we first compare the properties of Type I (GSK3357679A and MLi-2) and Type II (GZD-824, Rebastinib and Ponatinib) kinase inhibitors that bind to the closed or open conformations of the LRRK2 kinase domain, respectively. We show that Type I and Type II inhibitors suppress phosphorylation of Rab10 and Rab12, key physiological substrates of LRRK2 and also promote mitophagy, a process suppressed by LRRK2.
View Article and Find Full Text PDFParkinson's disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation - key features of the autophagy of mitochondria, known as mitophagy. Here, we investigated the role of LRRK2, a protein kinase frequently mutated in PD, in this process in vivo.
View Article and Find Full Text PDFIntestinal intraepithelial lymphocytes (IEL) are an abundant population of tissue-resident T cells that protect and maintain the intestinal barrier. IEL respond to epithelial cell-derived IL-15, which is complexed to the IL-15 receptor α chain (IL-15/Rα). IL-15 is essential both for maintaining IEL homeostasis and inducing IEL responses to epithelial stress, which has been associated with Coeliac disease.
View Article and Find Full Text PDFPrevious studies suggest that statins may disturb skeletal muscle lipid metabolism potentially causing lipotoxicity with insulin resistance. We investigated this possibility in wild-type mice (WT) and mice with skeletal muscle PGC-1α overexpression (PGC-1α OE mice). In WT mice, simvastatin had only minor effects on skeletal muscle lipid metabolism but reduced glucose uptake, indicating impaired insulin sensitivity.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disorder that affects around 2% of individuals over 60 years old. It is characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain, which is thought to account for the major clinical symptoms such as tremor, slowness of movement and muscle stiffness. Its aetiology is poorly understood as the physiological and molecular mechanisms leading to this neuronal loss are currently unclear.
View Article and Find Full Text PDFSeveral studies showed an increased risk for diabetes with statin treatment. PGC-1α is an important regulator of muscle energy metabolism and mitochondrial biogenesis. Since statins impair skeletal muscle PGC-1α expression and reduced PGC-1α expression has been observed in diabetic patients, we investigated the possibility that skeletal muscle PGC1α expression influences the effect of simvastatin on muscle glucose metabolism.
View Article and Find Full Text PDFMitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag.
View Article and Find Full Text PDFAim: Statins decrease cardiovascular complications, but can induce myopathy. Here, we explored the implication of PGC-1α in statin-associated myotoxicity.
Methods: We treated PGC-1α knockout (KO), PGC-1α overexpression (OE) and wild-type (WT) mice orally with 5 mg simvastatin kg day for 3 weeks and assessed muscle function and metabolism.
Statins lower the serum low-density lipoprotein cholesterol and prevent cardiovascular events by inhibiting 3-hydroxy-3-methyl-glutaryl-CoA reductase. Although the safety of statins is documented, many patients ingesting statins may suffer from skeletal muscle-associated symptoms (SAMS). Importantly, SAMS are a common reason for stopping the treatment with statins.
View Article and Find Full Text PDFStatins inhibit cholesterol biosynthesis and lower serum LDL-cholesterol levels. Statins are generally well tolerated, but can be associated with potentially life-threatening myopathy of unknown mechanism. We have shown previously that statins impair PGC-1β expression in human and rat skeletal muscle, suggesting that PGC-1β may play a role in statin-induced myopathy.
View Article and Find Full Text PDFMutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in mammals remains unknown.
View Article and Find Full Text PDFDysregulated mitophagy has been linked to Parkinson's disease (PD) due to the role of PTEN-induced kinase 1 (PINK1) in mediating depolarization-induced mitophagy in vitro. Elegant mouse reporters have revealed the pervasive nature of basal mitophagy in vivo, yet the role of PINK1 and tissue metabolic context remains unknown. Using mito-QC, we investigated the contribution of PINK1 to mitophagy in metabolically active tissues.
View Article and Find Full Text PDFWhether and how moderate exercise might allow for accelerated limb recovery in chronic critical limb ischemia (CLI) remains to be determined. Chronic CLI was surgically induced in mice, and the effect of moderate exercise (training five times per week over a 3-week period) was investigated. Tissue damages and functional scores were assessed on the 4th, 6th, 10th, 20th, and 30th day after surgery.
View Article and Find Full Text PDFDermatomyositis (DM) is an autoimmune disease associated with enhanced type I interferon (IFN) signalling in skeletal muscle, but the mechanisms underlying muscle dysfunction and inflammation perpetuation remain unknown. Transcriptomic analysis of early untreated DM muscles revealed that the main cluster of down-regulated genes was mitochondria-related. Histochemical, electron microscopy, and in situ oxygraphy analysis showed mitochondrial abnormalities, including increased reactive oxygen species (ROS) production and decreased respiration, which was correlated with low exercise capacities and a type I IFN signature.
View Article and Find Full Text PDFBackground: Protection against acute skeletal muscle metabolic dysfunction and oxidative stress could be a therapeutic target in volume expansion for severely bleeding patients.
Objectives: This experimental pilot study in swine aims at comparing 130/0.4 hydroxyethyl starch (HES) with 4% albumin along with crystalloid perfusion for first-line volume expansion in haemorrhagic shock with a particular emphasis on oxidative stress and muscular mitochondrial function.
Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a carnitine analog inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.
Methods: Male Sprague Dawley rats were treated daily with water (control rats; n = 12) or with 20 mg/100 g body weight THP (n = 12) via oral gavage for 3 weeks.
Exercise training is a well-recognized way to improve vascular endothelial function by increasing nitric oxide (NO) bioavailability. However, in hypertensive subjects, unlike low- and moderate-intensity exercise training, the beneficial effects of continuous high-intensity exercise on endothelial function are not clear, and the underlying mechanisms remain unknown. The aim of this study was to investigate the impact of high-intensity exercise on vascular function, especially on the NO pathway, in spontaneous hypertensive rats (SHR).
View Article and Find Full Text PDFAims: Although statins are the most widely used cholesterol-lowering agents, they are associated with a variety of muscle complaints. The goal of this study was to characterize the effects of statins on the mitochondrial apoptosis pathway induced by mitochondrial oxidative stress in skeletal muscle using human muscle biopsies as well as in vivo and in vitro models.
Results: Statins increased mitochondrial H2O2 production, the Bax/Bcl-2 ratio, and TUNEL staining in deltoid biopsies of patients with statin-associated myopathy.
Systemic sclerosis (SSc) is a chronic multisystemic connective tissue disease characterized by progressive fibrosis affecting skin and internal organs. Despite serious efforts to unveil the pathogenic mechanisms of SSc, they are still unclear. High levels of reactive oxygen species (ROS) in affected patients have been shown, and ROS are suggested to play a role in fibrosis pathogenesis.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2015
The consequences of carnitine depletion upon metabolic and contractile characteristics of skeletal muscle remain largely unexplored. Therefore, we investigated the effect of N-trimethyl-hydrazine-3-propionate (THP) administration, a carnitine analog inhibiting carnitine biosynthesis and renal reabsorption of carnitine, on skeletal muscle function and energy metabolism. Male Sprague-Dawley rats were fed a standard rat chow in the absence (CON; n = 8) or presence of THP (n = 8) for 3 wk.
View Article and Find Full Text PDFEven though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times.
View Article and Find Full Text PDF