Anthropogenic activities increase sediment suspended in the water column and deposition on reefs can be largely dependent on colony morphology. Massive and plating corals have a high capacity to trap sediments, and active removal mechanisms can be energetically costly. Branching corals trap less sediment but are more susceptible to light limitation caused by suspended sediment.
View Article and Find Full Text PDFClimate change driven seawater temperature (SWT) increases results in greater abundance and geographical expansion of marine pathogens, among which (Vp) causes serious economic and health issues. In addition, plastic pollution in the ocean constitutes a vector for harmful pathogens dissemination. We investigate the effect of elevated SWT on the expression of genes implicated in adhesion and biofilm formation on abiotic surfaces in the clinical Vp strain RIMD2210633, which expresses hemolysins.
View Article and Find Full Text PDFCorals in nearshore marine environments are increasingly exposed to reduced water quality, which is the primary local threat to Hawaiian coral reefs. It is unclear if corals surviving in such conditions have adapted to withstand sedimentation, pollutants, and other environmental stressors. Lobe coral populations from Maunalua Bay, Hawaii showed clear genetic differentiation between the 'polluted, high-stress' nearshore site and the 'less polluted, lower-stress' offshore site.
View Article and Find Full Text PDFBackground: Recent sequencing projects on early-diverging metazoans such as cnidarians, have unveiled a rich innate immunity gene repertoire; however, little is known about immunity gene regulation in the host's early response against marine bacterial pathogens over time. Here, we used RNA-seq on the sea anemone Exaiptasia pallida (Ep) strain CC7 as a model to depict the innate immune response during the onset of infection with the marine pathogenic bacteria Vibrio parahaemolyticus (Vp) clinical strain O3:K6, and lipopolysaccharides (LPS) exposure. Pairwise and time series analyses identified the genes responsive to infection as well as the kinetics of innate immune genes over time.
View Article and Find Full Text PDFOcean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals.
View Article and Find Full Text PDFWild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions.
View Article and Find Full Text PDFGlobally, reef-building corals are the most prolific producers of dimethylsulphoniopropionate (DMSP), a central molecule in the marine sulphur cycle and precursor of the climate-active gas dimethylsulphide. At present, DMSP production by corals is attributed entirely to their algal endosymbiont, Symbiodinium. Combining chemical, genomic and molecular approaches, we show that coral juveniles produce DMSP in the absence of algal symbionts.
View Article and Find Full Text PDFThe global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover.
View Article and Find Full Text PDFRecent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear.
View Article and Find Full Text PDFHigh-throughput sequencing technologies are currently revolutionizing the field of biology and medicine, yet bioinformatic challenges in analysing very large data sets have slowed the adoption of these technologies by the community of population biologists. We introduce the 'Simple Fool's Guide to Population Genomics via RNA-seq' (SFG), a document intended to serve as an easy-to-follow protocol, walking a user through one example of high-throughput sequencing data analysis of nonmodel organisms. It is by no means an exhaustive protocol, but rather serves as an introduction to the bioinformatic methods used in population genomics, enabling a user to gain familiarity with basic analysis steps.
View Article and Find Full Text PDFBackground: Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals.
View Article and Find Full Text PDFBiofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0-2%).
View Article and Find Full Text PDFThe success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium.
View Article and Find Full Text PDFMembers of the universal stress protein (USP) family were originally identified in stressed bacteria on the basis of a shared domain, which has since been reported in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants. Although not previously characterized in metazoans, here we report that USP genes are distributed in animal genomes in a unique pattern that reflects frequent independent losses and independent expansions. Multiple USP loci are present in urochordates as well as all Cnidaria and Lophotrochozoa examined, but none were detected in any of the available ecdysozoan or non-urochordate deuterostome genome data.
View Article and Find Full Text PDFA microarray study was undertaken to examine the potential for clonal gene expression variation in a branching reef building coral, Acropora millepora. The role of small-scale gradients in light and water flow was examined by comparing gene expression levels between branch elevation (tip and base) and position (centre and edge) of replicate coral colonies (n=3). Analyses of variance revealed that almost 60% of variation in gene expression was present between colonies and 34 genes were considered differentially expressed between colonies (minimum P=6.
View Article and Find Full Text PDF