Publications by authors named "Francois Reniers"

In this work, immobilization of the often unwanted filaments in dielectric barrier discharges (DBD) is achieved and used for one-step deposition of patterned coatings. By texturing one of the dielectric surfaces, a discharge containing stationary plasma filaments is ignited in a mix of argon and propargyl methacrylate (PMA) in a reactor operating at atmospheric pressure. From PMA, hydrophobic and hydrophilic chemical and topographical contrasts at sub-millimeter scale are obtained on silicon and glass substrates.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) treatment has been proposed as a potentially innovative therapeutic tool in the biomedical field, notably for cancer due to its proposed toxic selectivity on cancer cells versus healthy cells. In the present study, we addressed the relevance of three-dimensional organoid technology to investigate the biological effects of CAP on normal epithelial stem cells and tumor cells isolated from mouse small intestine. CAP treatment exerted dose-dependent cytotoxicity on normal organoids and induced major transcriptomic changes associated with the global response to oxidative stress, fetal-like regeneration reprogramming, and apoptosis-mediated cell death.

View Article and Find Full Text PDF

Germanium is particularly suitable for the design of FTIR-based biosensors for proteins. The grafting of stable and thin organic layers on germanium surfaces remains, however, challenging. To tackle this problem, we developed a calix[4]arene-tetradiazonium salt decorated with four oligo(ethylene glycol) chains and a terminal reactive carboxyl group.

View Article and Find Full Text PDF

The (electro)chemical grafting of a polyfluorinated calix[4]arene on gold, polypropylene and glass is reported. The modified surfaces were characterized by ellipsometry, atomic force microscopy (AFM), and by X-ray photoelectron spectroscopy (XPS). A nanometric, robust and uniform monolayer of covalently surface-bound calix[4]arenes was obtained on the three different materials.

View Article and Find Full Text PDF

This work presents a simple, fast (20 min treatment), inexpensive, and highly efficient method for synthesizing nitrogen-doped titanium dioxide (N-TiO) as an enhanced visible light photocatalyst. In this study, N-TiO coatings were fabricated by atmospheric pressure dielectric barrier discharge (DBD) at room temperature. The composition and the chemical bonds of the TiO and N-TiO coatings were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS).

View Article and Find Full Text PDF

Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO conversion is plasma technology.

View Article and Find Full Text PDF

The immobilization of a copper calix[6]azacryptand funnel complex on gold-modified electrodes is reported. Two different methodologies are described. One is based on alkyne-terminated thiol self-assembled monolayers.

View Article and Find Full Text PDF

Gold nanoparticles stabilized with a thin layer of post-functionalizable calix[4]arenes were prepared through the reductive grafting of a calix[4]arene-tetra-diazonium salt. These particles show exceptional stability towards extreme pH, F(-), NaCl, and upon drying. Post-functionalization of the calix-layer was demonstrated, opening the way to a wide range of applications.

View Article and Find Full Text PDF

The transformation of a poly(tetrafluoroethylene) (PTFE) hydrophobic surface into a superhydrophobic one using a low pressure RF plasma is explored using optical emission spectrometry (OES), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, mass measurements, and atomic force microscopy (AFM). It is shown that the increase in contact angle is due to an increase of roughness provoked by a chemical etching of the surface. We propose a molecular mechanism for etching that requires the simultaneous presence of atomic oxygen and negatively charged species (electrons) at the PTFE surface.

View Article and Find Full Text PDF

PTFE samples were treated by low-pressure, O RF plasmas. The adsorption of BSA was used as a probe for the protein resistant properties. The exposure of PTFE to an O plasma leads to an increase in the chamber pressure.

View Article and Find Full Text PDF