Biochim Biophys Acta Mol Basis Dis
November 2021
Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) is a protein that is required for the development and survival of enteric, sympathetic, and catecholaminergic neurons. We previously reported that GDNF is protective against high fat diet (HFD)-induced hepatic steatosis in mice through suppression of hepatic expression of peroxisome proliferator activated receptor-γ and genes encoding enzymes involved in de novo lipogenesis. We also reported that transgenic overexpression of GDNF in mice prevented the HFD-induced liver accumulation of the autophagy cargo-associated protein p62/sequestosome 1 characteristic of impaired autophagy.
View Article and Find Full Text PDFKey Points: A high-fat diet (60% kcal from fat) is associated with motility disorders inducing constipation and loss of nitrergic myenteric neurons in the proximal colon. Gut microbiota dysbiosis, which occurs in response to HFD, contributes to endotoxaemia. High levels of lipopolysaccharide lead to apoptosis in cultured myenteric neurons that express Toll-like receptor 4 (TLR4).
View Article and Find Full Text PDFBackground & Aims: High-fat diet (HFD) feeding is associated with gastrointestinal motility disorders. We recently reported delayed colonic motility in mice fed a HFD mice for 11 weeks. In this study, we investigated the contributing role of gut microbiota in HFD-induced gut dysmotility.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2016
Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS).
View Article and Find Full Text PDFColonic transit and mucosal integrity are believed to be impaired in obesity. However, a comprehensive assessment of altered colonic functions, inflammatory changes and neuronal signalling of obese animals is missing. In mice, we studied the impact of diet-induced obesity (DIO) on: (i) in vivo colonic transit; (ii) signalling in the myenteric plexus by recording responses to nicotine and 2-methyl-5-hydroxytryptamine (2-methyl-5-HT), together with the expression of tryptophan hydroxylase (TPH) 1 and 2, serotonin reuptake transporter, choline acetyltransferase and the paired box gene 4; and (iii) expression of proinflammatory cytokines, epithelial permeability and density of macrophages, mast cells and enterochromaffin cells.
View Article and Find Full Text PDFNutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity.
View Article and Find Full Text PDFClay consumption is a spontaneous behavior currently observed in animals and humans, particularly during undernutrition. Often regarded as intestinal care products, ingested clays also enhance food efficiency, notably by increasing intestinal lipid uptake. Clay complementation could then optimize the reconstitution of energy reserves in animals with low lipid stocks consecutive to intensive fasting.
View Article and Find Full Text PDFGeophagia is found in various animal species and in humans. We have previously shown that spontaneously ingested kaolinite interacts with the intestinal mucosa modifies nutrient absorption and slows down gastric emptying and intestinal transit in rats in vivo. However, the precise mechanisms involved are not elucidated.
View Article and Find Full Text PDFAlthough some of the effects of clay ingestion by humans and animals, such as gastrointestinal wellness and the increase in food efficiency are well known, the underlying mechanisms are not yet fully understood. Therefore, the interactions between the intestinal mucosa and kaolinite particles and their effects on mucosal morphology were observed using light microscopy (LM), transmission electron microscopy (TEM), conventional (CSEM) and environmental (ESEM) scanning electron microscopy combined with an EDX micro-analysis system. Kaolinite consumption, given with free access to rats, varied considerably from one animal to the other but was regular through time for each individual.
View Article and Find Full Text PDFConsumption by animals and humans of earthy materials such as clay is often related to gut pathologies. Our aim was to determine the impact of kaolinite ingestion on glucose and NEFA transport through the intestinal mucosa. The expression of hexose transporters (Na/glucose co-transporter 1 (SGLT1), GLUT2, GLUT5) and of proteins involved in NEFA absorption (fatty acid transporter/cluster of differentiation 36 (FAT/CD36), fatty acid transport protein 4 (FATP4) and liver fatty acid binding protein (L-FABP)) was measured (1) in rats whose jejunum was perfused with a solution of kaolinite, and (2) in rats who ate spontaneously kaolinite pellets during 7 and 28 d.
View Article and Find Full Text PDFIntestinal villus atrophy through prolonged fasting was studied according to two different metabolic phases reached by fasting animals and characterized by (a) the mobilization of fat stores as body fuel and (b) an increase in protein catabolism for energy expenditure. The mechanisms involved in the rapid jejunal restoration after refeeding were also determined. Mucosal structural atrophy during fasting proved to worsen over the two phases due mainly to the retraction of the lacteals in the lamina propria, as observed through the immunolocalization of aquaporin 1 in the endothelial cells of the lymphatic vessels and the detachment of the basal membrane of the epithelial lining at the tip of the villi.
View Article and Find Full Text PDF