Uridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators.
View Article and Find Full Text PDFThe La-related protein 7 (LARP7) forms a complex with the nuclear 7SK RNA to regulate RNA polymerase II transcription. It has been implicated in cancer and the Alazami syndrome, a severe developmental disorder. Here, we report a so far unknown role of this protein in RNA modification.
View Article and Find Full Text PDFIn Trypanosoma brucei, most mitochondrial mRNAs undergo editing, and 3' adenylation and uridylation. The internal sequence changes and terminal extensions are coordinated: pre-editing addition of the short (A) tail protects the edited transcript against 3'-5' degradation, while post-editing A/U-tailing renders mRNA competent for translation. Participation of a poly(A) binding protein (PABP) in coupling of editing and 3' modification processes has been inferred, but its identity and mechanism of action remained elusive.
View Article and Find Full Text PDFMitochondrial genomes are often transcribed into polycistronic RNAs punctuated by tRNAs whose excision defines mature RNA boundaries. Although kinetoplast DNA lacks tRNA genes, it is commonly held that in the monophosphorylated 5' ends of functional molecules typify precursor partitioning by an unknown endonuclease. On the contrary, we demonstrate that individual mRNAs and rRNAs are independently synthesized as 3'-extended precursors.
View Article and Find Full Text PDFIn , most mitochondrial mRNAs undergo internal changes by RNA editing and 3' end modifications. The temporally separated and functionally distinct modifications are manifested by adenylation prior to editing, and by post-editing extension of a short A-tail into a long A/U-heteropolymer. The A-tail stabilizes partially and fully edited mRNAs, while the A/U-tail enables mRNA binding to the ribosome.
View Article and Find Full Text PDFUridylation emerges as a key modification promoting mRNA degradation in eukaryotes. In addition, uridylation by URT1 prevents the accumulation of excessively deadenylated mRNAs in Arabidopsis. Here, we show that the extent of mRNA deadenylation is controlled by URT1.
View Article and Find Full Text PDFThe biosynthesis of ribosomal RNA and its incorporation into functional ribosomes is an essential and intricate process that includes production of mature ribosomal RNA from large precursors. Here, we analyse the contribution of the plant exosome and its co-factors to processing and degradation of 18S pre-RNAs in Arabidopsis thaliana. Our data show that, unlike in yeast and humans, an RRP6 homologue, the nucleolar exoribonuclease RRP6L2, and the exosome complex, together with RRP44, function in two distinct steps of pre-18S rRNA processing or degradation in Arabidopsis.
View Article and Find Full Text PDFThe RNA exosome is the major 3'-5' RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2.
View Article and Find Full Text PDFUridine addition at the 3' end of RNAs (i.e., uridylation) emerges as a critical posttranscriptional modification promoting RNA degradation.
View Article and Find Full Text PDFDegradation of mRNAs is usually initiated by deadenylation, the shortening of long poly(A) tails to oligo(A) tails of 12-15 As. Deadenylation leads to decapping and to subsequent 5' to 3' degradation by XRN proteins, or alternatively 3' to 5' degradation by the exosome. Decapping can also be induced by uridylation as shown for the non-polyadenylated histone mRNAs in humans and for several mRNAs in Schizosaccharomyces pombe and Aspergillus nidulans.
View Article and Find Full Text PDFThe exosome is a conserved protein complex that is responsible for essential 3'→5' RNA degradation in both the nucleus and the cytosol. It is composed of a nine-subunit core complex to which co-factors confer both RNA substrate recognition and ribonucleolytic activities. Very few exosome co-factors have been identified in plants.
View Article and Find Full Text PDFPolyadenylation is a multifunctional post-transcriptional modification that is best known for stabilizing eukaryotic mRNAs and promoting their translation. However, the primordial role of polyadenylation is to target RNAs for degradation by 3' to 5' exoribonucleases. Polyadenylation-assisted RNA degradation contributes to post-transcriptional control in the three genetic compartments of a plant cell: the nucleus, the chloroplast and the mitochondrion.
View Article and Find Full Text PDF