Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients.
View Article and Find Full Text PDFThe Périgord black truffle (Tuber melanosporum Vittad.) is an ectomycorrhizal fungus forming edible fructifications. The production of T.
View Article and Find Full Text PDFTuber aestivum, also known as the summer or Burgundy truffle, is an ectomycorrhizal Ascomycete associated with numerous trees and shrubs. Its life cycle occurs in the soil, and thus soil parameters such as temperature and water availability could influence it. T.
View Article and Find Full Text PDFThe molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.
View Article and Find Full Text PDFAccording to isotopic labeling experiments, most of the carbon used by truffle (Tuber sp.) fruiting bodies to develop underground is provided by host trees, suggesting that trees and truffles are physically connected. However, such physical link between trees and truffle fruiting bodies has never been observed.
View Article and Find Full Text PDFEcto- and endo-mycorrhizal colonization of roots have a positive impact on the overall tree health and growth. A complete molecular understanding of these interactions will have important implications for increasing agricultural or forestry sustainability using plant:microbe-based strategies. These beneficial associations entail extensive morphological changes orchestrated by the genetic reprogramming in both organisms.
View Article and Find Full Text PDFMycorrhiza
March 2019
From 1903-1904 to 1988-1989, the two World Wars and sociological factors as rural desertification and changes in land uses mainly explained the decline of black truffle production in the Vaucluse department, which well reflects that of the whole of France. These can be correlated with the annual climatic variations as well as, from 1924-1925 to 1948-1949, the raw production rates of the managed truffle orchard of Pernes-les-Fontaines located in Vaucluse. The two methods used (correlation coefficients and Bayesian functional linear regression with Sparse Step functions) gave consistent results: the main factor explaining the annual variations of truffle production was the summer climatic water deficit of the year n.
View Article and Find Full Text PDFTuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate.
View Article and Find Full Text PDFIn this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.
View Article and Find Full Text PDFThe Périgord black truffle (Tuber melanosporum Vittad.) is a heterothallic ascomycete that establishes ectomycorrhizal symbiosis with trees and shrubs. Small-scale genetic structures of female genotypes in truffle orchards are known, but it has not yet been studied in male genotypes.
View Article and Find Full Text PDFEctomycorrhizae create a multitrophic ecosystem formed by the association between tree roots, mycelium of the ectomycorrhizal fungus, and a complex microbiome. Despite their importance in the host tree's physiology and in the functioning of the ectomycorrhizal symbiosis, detailed studies on ectomycorrhiza-associated bacterial community composition and their temporal dynamics are rare. Our objective was to investigate the composition and dynamics of Tuber melanosporum ectomycorrhiza-associated bacterial communities from summer to winter seasons in a Corylus avellana tree plantation.
View Article and Find Full Text PDFProduction of the black truffle (Tuber melanosporum Vittad.) has experienced a decline in France over the last century. Different sociological factors as well as climate change have been suggested as possible explanations for this decline.
View Article and Find Full Text PDFAlthough truffles are cultivated since decades, their life cycle and the conditions stimulating ascocarp formation still remain mysterious. A role for bacteria in the development of several truffle species has been suggested but few is known regarding the natural bacterial communities of Périgord Black truffle. Thus, the aim of this study was to decipher the structure and the functional potential of the bacterial communities associated to the Black truffle in the course of its life cycle and along truffle maturation.
View Article and Find Full Text PDFTruffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with (13)CO2.
View Article and Find Full Text PDFThe genetic structure of ectomycorrhizal (ECM) fungal populations results from both vegetative and sexual propagation. In this study, we have analysed the spatial genetic structure of Tuber melanosporum populations, a heterothallic ascomycete that produces edible fruit bodies. Ectomycorrhizas from oaks and hazels from two orchards were mapped and genotyped using simple sequence repeat markers and the mating type locus.
View Article and Find Full Text PDFBackground: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome.
View Article and Find Full Text PDFIt is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L.
View Article and Find Full Text PDFIn natural conditions, basidiomycete ectomycorrhizal fungi such as Laccaria bicolor are typically in the dikaryotic state when forming symbioses with trees, meaning that two genetically different individuals have to fuse or 'mate'. Nevertheless, nothing is known about the molecular mechanisms of mating in these ecologically important fungi. Here, advantage was taken of the first sequenced genome of the ectomycorrhizal fungus, Laccaria bicolor, to determine the genes that govern the establishment of cell-type identity and orchestrate mating.
View Article and Find Full Text PDFIt has been postulated that osmotic effects on plant tissue are mediated by abscisic acid (ABA). Hybrid larch (Larix kaempferi (Lambert) Carr. x L.
View Article and Find Full Text PDFWe compared the effects of two auxin transport inhibitors (2,3,5-triiodobenzoic acid (TIBA) and 1-N-naphthylphthalamic acid (NPA)) on rhizogenesis and mycorrhizal establishment of Picea abies L. (Karst.) seedlings inoculated with Laccaria bicolor S238N (Maire) Orton.
View Article and Find Full Text PDFWe amplified by PCR and sequenced 46 partial Ty1- copia reverse transcriptase (RT) sequences from the ectomycorrhizal basidiomycetes Pisolithus and Laccaria bicolor and the host tree Eucalyptus globulus. Phylogenetic analyses indicated that these sequences represent a new class of Ty1- copia RT, characteristic of basidiomycetes but related to plant Ty1- copia retrotransposons. To generate fingerprints of L.
View Article and Find Full Text PDFThe American strain S238N of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton has been used to inoculate Douglas-fir [Pseudotsuga menziesii (Mir.) Franco] plantations in France over the last two decades. Laccaria fruit bodies are scarce in mature plantations, which precludes further assessment of its persistence by fruit body surveys.
View Article and Find Full Text PDF