Artif Intell Med
August 2019
Purpose: Using artificial intelligence techniques, we compute optimal personalized protocols for temozolomide administration in a population of patients with variability.
Methods: Our optimizations are based on a Pharmacokinetics/Pharmacodynamics (PK/PD) model with population variability for temozolomide, inspired by Faivre et al. [10] and Panetta et al.
Math Biosci
September 2019
Background: The standard treatment for high-grade non-Hodgkin lymphoma involves the combination of chemotherapy and immunotherapy. We characterize in-silico the optimal combination protocol that maximizes the overall survival probability. We rely on a pharmacokinetics/pharmacodynamics (PK/PD) model that describes the joint evolution of tumor and effector cells, as well as the effects of both chemotherapy and immunotherapy.
View Article and Find Full Text PDFWe determine an optimal protocol for temozolomide using population variability and dynamic optimization techniques inspired by artificial intelligence. We use a Pharmacokinetics/Pharmacodynamics (PK/PD) model based on Faivre and coauthors (Faivre, et al., 2013) for the pharmacokinetics of temozolomide, as well as the pharmacodynamics of its efficacy.
View Article and Find Full Text PDF