Quantum computing opens new avenues for modeling correlated materials, which are notoriously challenging to solve due to the presence of large electronic correlations. Quantum embedding approaches, such as dynamical mean-field theory, provide corrections to first-principles calculations for strongly correlated materials, which are poorly described at lower levels of theory. Such embedding approaches are computationally demanding on classical computing architectures and hence remain restricted to small systems, limiting the scope of their applicability.
View Article and Find Full Text PDFRecent observations of selective emergence (suppression) of superconductivity in the uncollapsed (collapsed) tetragonal phase of LaFe_{2}As_{2} has rekindled interest in understanding what features of the band structure control the superconducting T_{c}. We show that the proximity of the narrow Fe-d_{xy} state to the Fermi energy emerges as the primary factor. In the uncollapsed phase this state is at the Fermi energy, and is most strongly correlated and a source of enhanced scattering in both single and two particle channels.
View Article and Find Full Text PDF