Biomolecules
February 2023
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs).
View Article and Find Full Text PDFThe progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson's disease (PD). Immunotherapies, both active and passive, against α-syn have been developed and are promising novel treatment strategies for such disorders. To increase the potency and specificity of PD vaccination, we created the 'Win the Skin Immune System Trick' (WISIT) vaccine platform designed to target skin-resident dendritic cells, inducing superior B and T cell responses.
View Article and Find Full Text PDFIn 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his son Roger, the concepts that decades later, would become the fundamentals of prion and prion-like neurobiology: nucleation, seeding and conformational templating of monomers, linear polymer elongation, fragmentation, and spread. He published his premonitory discovery in a movie he publicly presented at only two conferences in 1958, a movie we thus reproduce here.
View Article and Find Full Text PDFThe distinct neuropathological features of the different α-Synucleinopathies, as well as the diversity of the α-Synuclein (α-Syn) intracellular inclusion bodies observed in post mortem brain sections, are thought to reflect the strain diversity characterizing invasive α-Syn amyloids. However, this "one strain, one disease" view is still hypothetical, and to date, a possible disease-specific contribution of non-amyloid factors has not been ruled out. In Multiple System Atrophy (MSA), the buildup of α-Syn inclusions in oligodendrocytes seems to result from the terminal storage of α-Syn amyloid aggregates first pre-assembled in neurons.
View Article and Find Full Text PDFAggregated alpha-synuclein (α-syn) is a principal constituent of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) observed respectively inside neurons in Parkinson's disease (PD) and oligodendrocytes in multiple system atrophy (MSA). Yet, the cellular origin, the pathophysiological role, and the mechanism of formation of these inclusions bodies (IBs) remain to be elucidated. It has recently been proposed that α-syn IBs eventually cause the demise of the host cell by virtue of the cumulative sequestration of partner proteins and organelles.
View Article and Find Full Text PDFThe synucleinopathy underlying multiple system atrophy (MSA) is characterized by the presence of abundant amyloid inclusions containing fibrillar α-synuclein (α-syn) aggregates in the brains of the patients and is associated with an extensive neurodegeneration. In contrast to Parkinson's disease (PD) where the pathological α-syn aggregates are almost exclusively neuronal, the α-syn inclusions in MSA are principally observed in oligodendrocytes (OLs) where they form glial cytoplasmic inclusions (GCIs). This is intriguing because differentiated OLs express low levels of α-syn, yet pathogenic amyloid α-syn seeds require significant amounts of α-syn monomers to feed their fibrillar growth and to eventually cause the buildup of cytopathological inclusions.
View Article and Find Full Text PDFThe conformational strain diversity characterizing α-synuclein (α-syn) amyloid fibrils is thought to determine the different clinical presentations of neurodegenerative diseases underpinned by a synucleinopathy. Experimentally, various α-syn fibril polymorphs have been obtained from distinct fibrillization conditions by altering the medium constituents and were selected by amyloid monitoring using the probe thioflavin T (ThT). We report that, concurrent with classical ThT-positive products, fibrillization in saline also gives rise to polymorphs invisible to ThT (τ).
View Article and Find Full Text PDFVDAC (Voltage Dependent Anion Channel) is a family of pore forming protein located in the outer mitochondrial membrane. Its channel property ensures metabolites exchange between mitochondria and the rest of the cell resulting in metabolism and bioenergetics regulation, and in cell death and life switch. VDAC1 is the best characterized and most abundant isoform, and is involved in many pathologies, as cancer or neurodegenerative diseases.
View Article and Find Full Text PDFTransportation of key proteins via extracellular vesicles has been recently implicated in various neurodegenerative disorders, including Parkinson's disease, as a new mechanism of disease spreading and a new source of biomarkers. Extracellular vesicles likely to be derived from the brain can be isolated from peripheral blood and have been reported to contain higher levels of α-synuclein (α-syn) in Parkinson's disease patients. However, very little is known about extracellular vesicles in multiple system atrophy, a disease that, like Parkinson's disease, involves pathological α-syn aggregation, though the process is centred around oligodendrocytes in multiple system atrophy.
View Article and Find Full Text PDFNat Neurosci
January 2019
Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of people with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTLD cases into at least four subtypes, which are correlated with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for biochemical isolation of pathological TDP-43.
View Article and Find Full Text PDFSynucleinopathies are a group of diseases characterized by the presence of intracellular protein aggregates containing α-synuclein (α-syn). While α-syn aggregates have been shown to induce multimodal cellular dysfunctions, uptake and transport mechanisms remain unclear. Using high-content imaging on cortical neurons and astrocytes, we here define the kinetics of neuronal and astrocytic abnormalities induced by human-derived α-syn aggregates grounding the use of such system to identify and test putative therapeutic compounds.
View Article and Find Full Text PDFBackground: Preclinical studies demonstrated that non-nucleoside reverse transcriptase inhibitors used for the treatment of HIV could antagonize tumor development. This led us to assess the efficacy of efavirenz in patients with metastatic castration-resistant prostate cancer (mCRPC) in a multicenter phase II study.
Methods: We used a Simon two-stage design and a 3-month prostate-specific antigen (PSA) nonprogression rate of 40% as a primary objective.
Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells.
View Article and Find Full Text PDFHIPK1 (homeodomain interacting protein kinase 1) is a serine/threonine kinase that belongs to the CMGC superfamily. Emerging data point to the role of HIPK1 in cancer, but it is still not clear whether it acts as a tumor suppressor or promoter. Here we identified HIPK1 as a kinase that is significantly overexpressed in colorectal cancer (CRC) and whose expression is stage-dependent.
View Article and Find Full Text PDFMonoclonal antibodies (MoAb) and tyrosine kinase inhibitors (TKI) targeting the EGFR (Epidermal Growth Factor Receptor) pathways are currently used in colorectal cancer treatment. Despite the improvement of median overall survival, resistance is observed notably due to KRAS and BRAF gene mutations. We synthesized four series of thienopyrimidines whose scaffold is structurally close to TKI used in clinical practice.
View Article and Find Full Text PDFThe antioxidant properties of α-tocopherol have been proposed to play a beneficial chemopreventive role against cancer. However, emerging data also indicate that it may exert contrasting effects on the efficacy of chemotherapeutic treatments when given as dietary supplement, being in that case harmful for patients. This dual role of α-tocopherol and, in particular, its effects on the efficacy of anticancer drugs remains poorly documented.
View Article and Find Full Text PDFPolyphenolic ellagitannins are natural compounds that are often associated with the therapeutic activity of plant extracts used in traditional medicine. They display cancer-preventing activity in animal models by a mechanism that remains unclear. Potential targets have been proposed, including DNA topoisomerases II (Top2).
View Article and Find Full Text PDFThe human p53 gene is a tumor suppressor mutated in half of colon cancers. Although p53 function appears important for proliferation arrest and apoptosis induced by cancer therapeutics, the prognostic significance of p53 mutations remains elusive. This suggests that p53 function is modulated at a posttranslational level and that dysfunctions affecting its modulators can have a prognostic impact.
View Article and Find Full Text PDFThe receptor tyrosine kinases (for example EGFR, PDGFR, VEGFR) are a transmembrane protein family which plays a crucial role in tumor growth, survival, metastasis dissemination and angiogenesis. During the past 10 years, many tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment (imatinib, gefitinib, erlotinib, sunitinib, sorafenib). These compounds generally possess a pyrrolo- or pyrimido- pyrimidine scaffold or approaching molecular structure.
View Article and Find Full Text PDFRecombinant fluorescent probes allow the detection of molecular events inside living cells. Many of them exploit the intracellular space to provide positional signals and, thus, require detection by single cell imaging. We describe here a novel strategy based on probes capable of encoding the spatial dimension of intracellular signals into "all-or-none" fluorescence intensity changes (differential anchorage probes, DAPs).
View Article and Find Full Text PDFVoltage-dependent anion channel (VDAC)1 is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 expression results in the inhibition of MPT caused by selenite-induced oxidative stress.
View Article and Find Full Text PDFThe aim of this study was to determine the apoptotic and cytotoxic effects induced on glioblastoma cells by various anticancer agents that possess different mechanisms of action (alkylating drugs, anti-EGFR (Epidermal Growth Factor receptor), proteasome inhibitor). Primary cell cultures were obtained from patients who underwent surgery for their glioblastoma. The cytotoxic effects of drugs were determined by MTT (dimethylthiazolyl diphenyl tetrazolium bromide) assay and apoptosis was evaluated by measuring mitochondrial potential by flow cytometry.
View Article and Find Full Text PDFBax is considered to be pivotal in inducing cytochrome c release (CCR) from mitochondria during apoptosis. Indeed, Bax redistributes to the mitochondrial outer membrane (MOM) upon activation and forms homo-multimers that are capable of permeabilizing the MOM. Our attempts to image this sequence of events in single live cells resulted in unexpected observations.
View Article and Find Full Text PDFGlioblastoma is a malignant astrocytic tumor with a median survival of about 12 months for which new therapeutic strategies are required. We therefore examined the cytotoxicity of anticancer drugs with different mechanisms of action on two human glioblastoma cell lines expressing various levels of EGFR (epidermal growth factor receptor). Apoptosis induced by these anticancer agents was evaluated by flow cytometry.
View Article and Find Full Text PDF