Iron and manganese are ubiquitous in the natural environment. Fe-Fe layered double hydroxide, commonly called green rust (), and Mn-Mn birnessite () are also well known to be reactive solid compounds. Therefore, studying the chemical interactions between Fe and Mn species could contribute to understanding the interactions between their respective biogeochemical cycles.
View Article and Find Full Text PDFAgainst the increase of bacterial resistance to traditional antibiotics, antimicrobial peptides (AMP) are considered as promising alternatives. Bacterial biofilms are more resistant to antibiotics that their planktonic counterpart. The purpose of this study was to investigate the action of an AMP against a nascent bacterial biofilm.
View Article and Find Full Text PDFExtracellular polymeric substances (EPS) play an important role in biofilm cohesion and adhesion to surfaces. EPS of a P. fluorescens biofilm were characterized through their vibrational spectra (infrared and Raman) and their conformational properties using single molecule force spectroscopy with specific probes for glucose, galactose, and N-acetyl glucosamine-rich EPS.
View Article and Find Full Text PDFAttenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to monitor Pseudomonas fluorescens biofilms in situ, non-destructively, in real time, and under fully hydrated conditions. Changes accompanying the metabolic evolution of the sessile bacterial cells from the nascent biofilm monolayer to the beginning of the multi-layered structure in the presence of nutrients were identified via the ATR-FTIR fingerprints of the young biofilm on the ATR crystal. The ATR-FTIR spectra were analysed by classical methods (time evolution of integrated intensities and profile evolution of specific bands), and also by a multivariate curve resolution, Bayesian positive source separation, to extract the pure component spectra and their change of concentration over time occurring during biofilm settlement.
View Article and Find Full Text PDFGlycogen is mainly found as the principal storage form of glucose in cells. Many bacteria are able to synthesize large amounts of glycogen under unfavorable life conditions. By combining infrared spectroscopy, single molecule force spectroscopy (SMFS) and immuno-staining technique, we evidenced that planktonic P.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2010
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is a useful method for monitoring biofilm in situ, non-destructively, in real time, and under fully hydrated conditions. In this work we focused on changes in Pseudomonas fluorescens ATR-FTIR fingerprint accompanying the very early stages of biofilm formation: initial bacterial adhesion and the very beginning of biofilm development in the presence of nutrients. To help interpreting variations in the ATR-FTIR fingerprint of sessile bacteria, ATR-FTIR spectra of planktonic bacteria in different growth phases were also examined, and the average surface coverage and spatial arrangement of bacteria on the ATR crystal were determined by epifluorescence microscopy.
View Article and Find Full Text PDFDrinking water quality management requires early warning tools which enable water supply companies to detect quickly and to forecast degradation of the microbial quality of drinking water during its transport throughout distribution systems. This study evaluated the feasibility of assessing, in real time, drinking water biostability by monitoring in situ the evolution of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) fingerprint of a nascent reference biofilm exposed to water being tested. For this purpose, the responses of nascent Pseudomonas fluorescens biofilms to variations in the dissolved organic carbon (DOC) level in tap water were monitored in situ and in real time by ATR-FTIR spectroscopy.
View Article and Find Full Text PDF