The adaptive evolution of large asexual populations is generally characterized by competition between clones carrying different beneficial mutations. Interference slows down the adaptation speed and makes the theoretical description of the dynamics more complex with respect to the successional occurrence and fixation of beneficial mutations typical of small populations. A simplified modeling framework considering multiple beneficial mutations with equal and constant fitness advantage is known to capture some of the essential features of laboratory evolution experiments.
View Article and Find Full Text PDFObjective: The aim of this work is to demonstrate a novel single-molecule DNA sequence comparison assay that is purely based on DNA mechanics.
Methods: A molecular construct that contained the two homologous but non-identical DNA sequences that were to be compared was prepared such that a four-way (Holliday) junction could be formed by the formation of heteroduplexes through the inter-recombination of the strands. Magnetic tweezers were used to manipulate the force and the winding applied to this construct for inducing both the formation and the migration of a Holliday junction.
Laboratory-based evolution experiments on microorganisms that do not recombine frequently show two distinct phases: an initial rapid increase in fitness followed by a slower regime. To explore the population structure and the evolutionary tree in the later stages of adaptation, we evolved a very large population (~3 × 10(10)) of Acinetobacter baylyi bacteria for approximately 2,800 generations from a single clone. The population was maintained in a chemostat at a high dilution rate.
View Article and Find Full Text PDFHelicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques.
View Article and Find Full Text PDFA magnetic tweezers setup is used to control both the stretching force and the relative linking number DeltaLk of a palindromic DNA molecule. We show here, in absence of divalent ions, that twisting negatively the molecule while stretching it at approximately 1 pN induces the formation of a cruciform DNA structure. Furthermore, once the cruciform DNA structure is formed, the extrusion of several kilo-base pairs of palindromic DNA sequence is directly and reversibly controlled by varying DeltaLk.
View Article and Find Full Text PDFPolymerases form a class of enzymes that act as molecular motors as they move along their nucleic acid substrate during catalysis, incorporating nucleotide triphosphates at the end of the growing chain and consuming chemical energy. A debated issue is how the enzyme converts chemical energy into motion [J. Gelles and R.
View Article and Find Full Text PDFWithin a single-molecule configuration, we have studied rotational drag on double stranded linear DNA by measuring the force during mechanical opening and closing of the double helix at different rates. The molecule is cranked at one end by the effect of unzipping and is free to rotate at the other end. In this configuration the rotational friction torque tau on double-stranded DNA leads to an additional contribution to the opening force.
View Article and Find Full Text PDF