Cytokine-primed neutrophils can undergo a nonapoptotic type of cell death using components of the necroptotic pathway, including receptor-interacting protein kinase-3 (RIPK3), mixed lineage kinase-like (MLKL) and NADPH oxidase. In this report, we provide evidence for a potential role of serine proteases in CD44-mediated necroptotic death of GM-CSF-primed human neutrophils. Specifically, we observed that several inhibitors known to block the enzymatic function of fibroblast activation protein-α (FAP-α) were able to block CD44-mediated reactive oxygen species production and cell death, but not FAS receptor-mediated apoptosis.
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK), a cytoplasmic tyrosine kinase, plays a central role in immunity and is considered an attractive target for treating autoimmune diseases. The use of currently marketed covalent BTK inhibitors is limited to oncology indications based on their suboptimal kinase selectivity. We describe the discovery and preclinical profile of LOU064 (remibrutinib, ), a potent, highly selective covalent BTK inhibitor.
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK) is a member of the TEC kinase family and is selectively expressed in a subset of immune cells. It is a key regulator of antigen receptor signaling in B cells and of Fc receptor signaling in mast cells and macrophages. A BTK inhibitor will likely have a positive impact on autoimmune diseases which are caused by autoreactive B cells and immune-complex driven inflammation.
View Article and Find Full Text PDFHdm2 (human MDM2, human double minute 2 homologue) counteracts p53 function by direct binding to p53 and by ubiquitin-dependent p53 protein degradation. Activation of p53 by inhibitors of the p53-Hdm2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. In addition, HdmX (human MDMX, human MDM4) was also identified as an important therapeutic target to efficiently reactivate p53, and it is likely that dual inhibition of Hdm2 and HdmX is beneficial.
View Article and Find Full Text PDFAs a result of our efforts to discover novel p53:MDM2 protein-protein interaction inhibitors useful for treating cancer, the potent and selective MDM2 inhibitor NVP-CGM097 (1) with an excellent in vivo profile was selected as a clinical candidate and is currently in phase 1 clinical development. This article provides an overview of the discovery of this new clinical p53:MDM2 inhibitor. The following aspects are addressed: mechanism of action, scientific rationale, binding mode, medicinal chemistry, pharmacokinetic and pharmacodynamic properties, and in vivo pharmacology/toxicology in preclinical species.
View Article and Find Full Text PDFBlocking the interaction between the p53 tumor suppressor and its regulatory protein MDM2 is a promising therapeutic concept under current investigation in oncology drug research. We report here the discovery of the first representatives of a new class of small molecule inhibitors of this protein-protein interaction: the dihydroisoquinolinones. Starting from an initial hit identified by virtual screening, a derivatization program has resulted in compound 11, a low nanomolar inhibitor of the p53-MDM2 interaction showing significant cellular activity.
View Article and Find Full Text PDFDeregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization.
View Article and Find Full Text PDFBiomarkers for patient selection are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. In this study, we report the discovery of a novel patient selection strategy for the p53-HDM2 inhibitor NVP-CGM097, currently under evaluation in clinical trials. By intersecting high-throughput cell line sensitivity data with genomic data, we have identified a gene expression signature consisting of 13 up-regulated genes that predicts for sensitivity to NVP-CGM097 in both cell lines and in patient-derived tumor xenograft models.
View Article and Find Full Text PDFThe G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2) is activated by 7α, 25-dihydroxycholesterol (7α25HC) and plays a role in T cell-dependant antibody response and B cell migration. Aberrant EBI2 signaling is implicated in a range of autoimmune disorders however its role in the CNS remains unknown. Here we characterize the functional role of EBI2 in GLIA cells using primary human astrocytes and EBI2 knockout animals.
View Article and Find Full Text PDFOxysterols have recently been identified as natural ligands for a G protein-coupled receptor called EBI2 (aka GPR183) ( Nature 2011 , 475 , 524 ; 519 ). EBI2 is highly expressed in immune cells ( J. Biol.
View Article and Find Full Text PDFOxysterols such as 7 alpha, 25-dihydroxycholesterol (7α,25-OHC) are natural ligands for the Epstein-Barr virus (EBV)-induced gene 2 (EBI2, aka GPR183), a G protein-coupled receptor (GPCR) highly expressed in immune cells and required for adaptive immune responses. Activation of EBI2 by specific oxysterols leads to chemotaxis of B cells in lymphoid tissues. While the ligand gradient necessary for this critical process of the adaptive immune response is established by a stromal cells subset here we investigate the involvement of the oxysterol/EBI2 system in the innate immune response.
View Article and Find Full Text PDFThe successful launches of dipeptidyl peptidase IV (DPP IV) inhibitors as oral anti-diabetics warrant and spur the further quest for additional chemical entities in this promising class of therapeutics. Numerous pharmaceutical companies have pursued their proprietary candidates towards the clinic, resulting in a large body of published chemical structures associated with DPP IV. Herein, we report the discovery of a novel chemotype for DPP IV inhibition based on the C-(1-aryl-cyclohexyl)-methylamine scaffold and its optimization to compounds which selectively inhibit DPP IV at low-nM potency and exhibit an excellent oral pharmacokinetic profile in the rat.
View Article and Find Full Text PDFEpstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2.
View Article and Find Full Text PDFOne of the benefits of beta-peptides as potential candidates for biological applications is their stability against common peptidases. Attempts have been made to rationalize this stability by altering the electron availability of a given amide carbonyl bond through the introduction of polar substituents at the alpha-position of a single beta-amino acid. Such beta-amino acids (beta-homoglycine, beta-homoalanine), containing one or two fluorine atoms or a hydroxy group in the alpha-position, were prepared in enantiopure form.
View Article and Find Full Text PDFThe syntheses of four glyco-imidazoles, which are pentose-derivatives belonging to the D-series, as well as the syntheses of their L-enantiomers, are reported. Starting from the known linear xylo, lyxo, arabino, and ribo imidazolo-pentoses in both the L- and the D-series, intramolecular Walden inversion led to the corresponding arabino, ribo, xylo, and lyxo pyrrolidinopentoses in the D- and the L-series, respectively, protection and deprotection steps being unavoidable prerequisites. The structures and configurations of all eight pyrrolidinopentoses were determined unambiguously, by a combination of 1H/13C NMR spectroscopy, circular dichroism and [alpha](D) values, in conjunction with single-crystal X-ray diffraction analysis of the L-xylo stereoisomer.
View Article and Find Full Text PDF