To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device.
View Article and Find Full Text PDFBackground Information: The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently.
View Article and Find Full Text PDFIntracellular trafficking mainly takes place along the microtubules, and its efficiency depends on the local architecture and organization of the cytoskeletal network. In this work, the cytoplasm of stem cells is subjected to mechanical vortexing at a frequency of up to 1 Hz, by using magnetic chains of endosomes embedded in the cell body, in order to locally perturb the network structure. The consequences are evaluated on the directionality and processivity of the spontaneous motion of endosomes.
View Article and Find Full Text PDFPhotodynamic therapy is an emerging cancer treatment that is particularly adapted for localized malignant tumor. The phototherapeutic agent is generally injected in the bloodstream and circulates in the whole organism as a chemotherapeutic agent, but needs light triggering to induce localized therapeutic effects. We found that one of the responses of in vitro and in vivo cancer cells to photodynamic therapy was a massive production and emission of extracellular vesicles (EVs): only 1 hour after the photo-activation, thousands of vesicles per cell were emitted in the extracellular medium.
View Article and Find Full Text PDFA wide variety of cells migrate directionally in response to chemical or mechanical cues, however the mechanisms involved in cue detection and translation into directed movement are debatable. Here we investigate a model of lymphocyte migration on the inner surface of blood vessels. Cells orient their migration against fluid flow, suggesting the existence of an adaptive mechano-tranduction mechanism.
View Article and Find Full Text PDFThe intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system.
View Article and Find Full Text PDFGlioblastoma Multiforme (GBM) is the most frequent malignant brain tumor with still poor prognosis. Tumor initiation, growth and recurrences might depend on Brain Tumor Stem Cells (BTSCs) which can promote tumor aggressiveness and potentially affords new therapeutic target. Recent works emphasized aberrant cell-surface glyco-conjugate expression in brain tumors suggesting that altered glycosylation is closely linked to cancer tumor metastasis and invasive process.
View Article and Find Full Text PDFThe coupling between cell-cell and cell-matrix adhesion systems is known to affect the stability of the adhesive status of cells, as well as tissue cohesion. In this work, we perform quantitative assays of integrin-cadherin cross talk in controlled and reproducible conditions. This is achieved by plating cells on microprinted fibronectin patterns of different sizes, and simulating the formation of an intercellular contact with a microbead coated with E-cadherin extracellular domains and brought to the cell membrane.
View Article and Find Full Text PDFBackground: Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology.
Methodology/principal Findings: This dual approach is based on endosome labeling with magnetic nanoparticles.
We investigate the dynamic response of single cells to weak and local rigidities, applied at controlled adhesion sites. Using multiple latex beads functionalized with fibronectin, and each trapped in its own optical trap, we study the reaction in real time of single 3T3 fibroblast cells to asymmetrical tensions in the tens of pN x microm(-1) range. We show that the cell feels a rigidity gradient even at this low range of tension, and over time develops an adapted change in the force exerted on each adhesion site.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2006
We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a microbead specifically bound to transmembrane receptors is driven by an oscillating optical trap, and the viscoelastic coefficient Ge(omega) is retrieved.
View Article and Find Full Text PDFWe have determined the microrheological response of the actin meshwork for individual cells. We applied oscillating forces with an optical tweezer to a micrometric bead specifically bound to the actin meshwork of C2 myoblasts, and measured the amplitude and phase shift of the induced cell deformation. For a non-perturbed single cell, we have shown that the elastic and loss moduli G' and G'' behave as power laws f (alpha) and f (beta) of the frequency f (0.
View Article and Find Full Text PDFWe present a direct experimental measurement of an effective temperature in a colloidal glass of laponite, using a micrometric bead as a thermometer. The nonequilibrium fluctuation-dissipation relation, in the particular form of a modified Einstein relation, is investigated with diffusion and mobility measurements of the bead embedded in the glass. We observe an unusual nonmonotonic behavior of the effective temperature: starting from the bath temperature, it is found to increase up to a maximum value, and then decrease back, as the system ages.
View Article and Find Full Text PDFWe compare the measurements of viscoelastic properties of adherent alveolar epithelial cells by two micromanipulation techniques: (i) magnetic twisting cytometry and (ii) optical tweezers, using microbeads of same size and similarly attached to F-actin. The values of equivalent Young modulus E, derived from linear viscoelasticity theory, become consistent when the degree of bead immersion in the cell is taken into account. E-values are smaller in (i) than in (ii): approximately 34-58 Pa vs approximately 29-258 Pa, probably because higher stress in (i) reinforces nonlinearity and cellular plasticity.
View Article and Find Full Text PDF