Background: Low molecular weight chemicals constitute one of the major causes of occupational allergies. European legislation on chemicals recommends limiting the use of in vivo models for assessing the sensitizing potential of chemicals, and encourages the development of integrated alternative methods. An in vitro mouse model of bone marrow-derived dendritic cells (BMDCs) that showed good accuracy (75%) and sensitivity (69%) has previously been developed to assess the sensitizing potential of chemicals.
View Article and Find Full Text PDFMany employees in the aluminum industry are exposed to a range of aluminum compounds by inhalation, and the presence of ultrafine particles in the workplace has become a concern to occupational health professionals. Some metal salts and metal oxides have been shown to enter the brain through the olfactory route, bypassing the blood-brain barrier, but few studies have examined whether aluminum compounds also use this pathway. In this context, we sought to determine whether aluminum was found in rat olfactory bulbs and whether its transfer depended on physicochemical characteristics such as solubility and granulometry.
View Article and Find Full Text PDFNotwithstanding potential neurotoxicity of inhaled titanium dioxide nanoparticles (TiO NPs), the toxicokinetics and consequences on blood-brain barrier (BBB) function remain poorly characterized. To improve risk assessment, we need to evaluate the impact on BBB under realistic environmental conditions and take into account vulnerability status such as age. 12-13 week and 19-month-old male rats were exposed by inhalation to 10 mg/m of TiO nano-aerosol (6 hrs/day, 5 day/week, for 4 weeks).
View Article and Find Full Text PDFThe increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m of a TiO nanostructured aerosol 6h/day, 5days/week for 4 weeks.
View Article and Find Full Text PDF1,2-Diethylbenzene (1,2-DEB) is used in the manufacture of some plastics. Exposure to 1,2-DEB has been shown to induce peripheral neuropathy in rats. This neurotoxicity is thought to be caused by a metabolite, 1,2-diacetylbenzene (1,2-DAB), a γ-diketone-like compound.
View Article and Find Full Text PDFThe mechanisms of action involved in the neurotoxicity of solvents are poorly understood. In vitro studies have suggested that the effects of some solvents might be due to the formation of reactive oxygen species (ROS). This study assesses hydroxyl radical (OH) generation and measures malondialdehyde (MDA) levels in the cerebral tissue of rats exposed to six solvents (n-hexane, n-octane, toluene, n-butylbenzene, cyclohexane and 1,2,4-trimethylcyclohexane).
View Article and Find Full Text PDFMale Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied.
View Article and Find Full Text PDFTriadimefon has been shown to inhibit monoamine uptake, bind to the dopamine (DA) transporter, and stimulate dopamine efflux in rat brain tissue, in vitro. To determine whether these changes also occur in the intact animal and to study the reversibility of the effects observed, we used in vivo microdialysis to determine changes in the concentrations of DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) in the striatal dialysates from free moving adult rats after exposure to triadimefon 50, 100 and 200mg/kg, i.p.
View Article and Find Full Text PDFSome aromatic solvents (e.g. toluene, p-xylene, styrene, and ethylbenzene) show, in the rat, striking ototoxicity characterized by an irreversible hearing loss, as measured by behavioural or electrophysiological methods, associated with damage to outer hair cells in the cochlea of the exposed animals.
View Article and Find Full Text PDFThe expiratory bradypnoea indicative of upper airway irritation in mice was evaluated during a period of 60 min of nasal exposure to methyl-2-cyanoacrylate, ethyl-2-cyanoacrylate, isopropyl-2-cyanoacrylate and 2-methoxyethyl-2-cyanoacrylate vapors using nose only exposure. Irritation of the upper respiratory tract caused a concentration-dependent decrease in the respiratory rate. The maximum effect occurred within the first 10 min of exposure and was followed by a drop-off in the response during the remainder of the exposure period.
View Article and Find Full Text PDFThe expiratory bradypnoea indicative of upper airway irritation in mice was evaluated during a period of 60 min of oronasal exposure to acetic acid, hydrogen peroxide and peroxyacetic acid vapours. The airborne concentration resulting in a 50% decrease in the respiratory rate of mice (RD50) was calculated for each chemical. The concentration-response curves of acetic acid, hydrogen peroxide and peroxyacetic acid had similar slopes.
View Article and Find Full Text PDF