Publications by authors named "Francois Ferriere"

In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet.

View Article and Find Full Text PDF
Article Synopsis
  • Previous studies show that synthetic glyceollins I and II have antiestrogenic and antiproliferative effects on breast cancer cells through various pathways.
  • This study explored the antitumor effects of glyceollins derived from fermented soybean extracts in vivo, finding significant reductions in cell migration and estrogen-dependent tumor growth in both chick eggs and nude mice.
  • The results indicate that natural glyceollins may reduce tumor angiogenesis and volume, suggesting their potential as therapies for breast cancer.
View Article and Find Full Text PDF

Breast cancer is the most common cancer and the deadliest among women worldwide. Estrogen signaling is closely associated with hormone-dependent breast cancer (estrogen and progesterone receptor positive), which accounts for two-thirds of tumors. Hormone therapy using antiestrogens is the gold standard, but resistance to these treatments invariably occurs through various biological mechanisms, such as changes in estrogen receptor activity, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle dysregulations.

View Article and Find Full Text PDF

Approximately 80% of breast cancer (BC) cases express the estrogen receptor (ER), and 30-40% of these cases acquire resistance to endocrine therapies over time. Hyperactivation of Akt is one of the mechanisms by which endocrine resistance is acquired. Apigenin (Api), a flavone found in several plant foods, has shown beneficial effects in cancer and chronic diseases.

View Article and Find Full Text PDF

Recent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines.

View Article and Find Full Text PDF

Biologically active plant-based compounds, commonly referred to as phytochemicals, can influence the expression and function of various receptors and transcription factors or signaling pathways that play vital roles in cellular functions and are then involved in human health and diseases. Thus, phytochemicals may have a great potential to prevent and treat chronic diseases. Glyceollins, a group of phytoalexins that are isolated from soybeans, have attracted attention because they exert numerous effects on human functions and diseases, notably anticancer effects.

View Article and Find Full Text PDF

Background: Estrogen receptors (ER) α and β are found in both women and men in many tissues, where they have different functions, including having roles in cell proliferation and differentiation of the reproductive tract. In addition to estradiol (E2), a natural hormone, numerous compounds are able to bind ERs and modulate their activities. Among these compounds, phytoestrogens such as isoflavones, which are found in plants, are promising therapeutics for several pathologies.

View Article and Find Full Text PDF

In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns.

View Article and Find Full Text PDF

Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions.

View Article and Find Full Text PDF

Xeno-estrogens, a class of endocrine disrupting chemicals (EDCs), can disturb estrogen receptor-dependent pathways involved in differentiation, proliferation or protection. Multiple methods have been developed to characterize the disturbances induced by EDCs in different cells or organs. In this study we have developed a new tool for the assessment of estrogenic compounds on differentiation.

View Article and Find Full Text PDF

Many studies have reported proliferative, differentiating or protective effects of estradiol, notably through estrogen receptor alpha (ERα). On the contrary, the ligand-independent action of ERα is currently poorly documented notably in cell protection. The stable transfection of wild type, substituted or truncated form of ERα in PC12 cells (ERα negative cell line) lead the specific study of its ligand-independent action.

View Article and Find Full Text PDF

A precise description of the mechanisms by which estrogen receptor-alpha (ERalpha) exerts its influences on cellular growth and differentiation is still pending. Here, we report that the differentiation of PC12 cells is profoundly affected by ERalpha. Importantly, depending upon its binding to 17beta-estradiol (17betaE2), ERalpha is found to exert different effects on pathways involved in nerve growth factor (NGF) signaling.

View Article and Find Full Text PDF

The estrogen receptor alpha (ER alpha) is key in regulating normal breast development and function and is closely involved in the onset and progress of cancers. ER alpha transcriptional activity is mediated through two activation functions, AF1 and AF2, whose activity is tightly regulated in a cell-specific manner through yet unknown processes. Here, we demonstrate that cell-cell junctions generate cell permissiveness to AF1 through an up-regulation of the activity of an AF1 sub-region termed box 1.

View Article and Find Full Text PDF

Numerous studies, both in vivo and in vitro, have reported neuronal differentiating and neuroprotective actions of estrogens. Most of these estrogenic effects are mediated through specific receptors termed estrogen receptors. The aim of this study was to assess the importance of the N-terminal A/B domain of the estrogen receptor-alpha (ER alpha) in its neuronal aspects.

View Article and Find Full Text PDF

The expression of two human estrogen receptor-alpha (hERalpha) isoforms has been characterized within estrogen receptor-alpha-positive breast cancer cell lines such as MCF7: the full-length hERalpha66 and the N terminally deleted hERalpha46, which is devoid of activation function (AF)-1. Although hERalpha66 is known to mediate the mitogenic effects that estrogens have on MCF7 cells, the exact function of hERalpha46 in these cells remains undefined. Here we show that, during MCF7 cell growth, hERalpha46 is mainly expressed in the nucleus at relatively low levels, whereas hERalpha66 accumulates in the nucleus.

View Article and Find Full Text PDF

Testicular descent corresponds to migration of the testis from the abdominal cavity to the scrotum and is essential for proper functioning of the testis. Recent advances in the characterization of estrogen receptor (ESR) subtypes and isoforms in various tissues prompted us to study ESRs within the gubernaculum testis, a structure involved in testicular descent. In the rat gubernaculum, we searched for ESR alpha (Esr1) and beta (Esr2) and for the androgen receptor (Ar), androgens being known to regulate testicular descent.

View Article and Find Full Text PDF

The distribution of D(2)R (dopamine D(2) receptor) mRNAs was studied in the forebrain of maturing female rainbow trout by means of in situ hybridization using a (35)S-labeled riboprobe (810 bp) spanning the third intracytoplasmic loop. A hybridization signal was consistently obtained in the olfactory epithelium, the internal cell layer of the olfactory bulbs, the ventral and dorsal subdivisions of the ventral telencephalon, and most preoptic subdivisions, with the notable exception of the magnocellular preoptic nucleus, and the periventricular regions of the mediobasal hypothalamus, including the posterior tuberculum. In the pituitary, the signal was higher in the pars intermedia than in the proximal and the rostral pars distalis, but no obvious correspondence with a given cell type could be assigned.

View Article and Find Full Text PDF

The role of sexual steroids in the modulation of a dopaminergic inhibitory tone on FSH and LH release was studied in the rainbow trout. The experiments were performed on previtellogenic trout, implanted or not with estradiol (E(2)), and vitellogenic trout. E(2) implant increased the circulating levels of LH and decreased the circulating levels of FSH in previtellogenic fish.

View Article and Find Full Text PDF