Although in humans, the brain fails to heal after an injury, young zebrafish are able to restore tissue structural integrity in less than 24 h, thanks to the mechanical action of microglia.
View Article and Find Full Text PDFWound closure after brain injury is crucial for tissue restoration but remains poorly understood at the tissue level. We investigated this process using in vivo observations of larval zebrafish brain injury. Our findings show that wound closure occurs within the first 24 h through global tissue contraction, as evidenced by live-imaging and drug inhibition studies.
View Article and Find Full Text PDFZebrafish larvae possess a fully functional central nervous system (CNS) with a high regenerative capacity only a few days after fertilization. This makes this animal model very useful for studying spinal cord injury and regeneration. The standard protocol for inducing such lesions is to transect the dorsal part of the trunk manually.
View Article and Find Full Text PDFCurr Opin Genet Dev
October 2020
Spinal cord injuries disrupt signalling from the brain leading to loss of limb, locomotion, sexual and bladder function, usually irreversible in humans. In zebrafish, recovery of function occurs in a few days for larvae or a few weeks for adults due to regrowth of axons and de novo neurogenesis. Together with its genetic amenability and optical clarity, this makes zebrafish a powerful animal model to study circuit reorganisation after spinal cord injuries.
View Article and Find Full Text PDF