In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL).
View Article and Find Full Text PDFCell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organization and secretion.
View Article and Find Full Text PDFThe protein Rgd1 is involved in the regulation of cytoskeleton formation and in signalling pathways that control cell polarity and growth in Saccharomyces cerevisiae. Rgd1p is composed of a F-BAR domain required for membrane binding and a RhoGAP domain responsible for activating Rho3p and Rho4p, two GTPases respectively involved in bud growth and cytokinesis. Rgd1p is recruited to the membrane through interactions with phosphoinositide lipids, which bind the two isolated domains and stimulate the RhoGAP activity on Rho4p.
View Article and Find Full Text PDFPhosphoinositide lipids recruit proteins to the plasma membrane involved in the regulation of cytoskeleton organization and in signalling pathways that control cell polarity and growth. Among those, Rgd1p is a yeast GTPase-activating protein (GAP) specific for Rho3p and Rho4p GTPases, which control actin polymerization and stress signalling pathways. Phosphoinositides not only bind Rgd1p, but also stimulate its GAP activity on the membrane-anchored form of Rho4p.
View Article and Find Full Text PDFPhosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished.
View Article and Find Full Text PDFHelicobacter pullorum, a bacterium initially isolated from poultry, has been associated with human digestive disorders. However, the factor responsible for its cytopathogenic effects on epithelial cells has not been formally identified. The cytopathogenic alterations induced by several human and avian H.
View Article and Find Full Text PDFPolarized growth of the yeast Saccharomyces cerevisiae depends on different biological processes and requires several signaling pathways. Signaling is mediated through a set of proteins, which include Rho3p and Rho4p GTPases. Although these two proteins are involved in the control of distinct aspects of polarized growth in yeast, they have a common regulator: the Rgd1 RhoGAP protein.
View Article and Find Full Text PDFEstablishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression.
View Article and Find Full Text PDFThe Rho GTPase activating protein Rgd1 increases the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p is a member of the F-BAR family conserved in eukaryotes; indeed, in addition to the C-terminal RhoGAP domain Rgd1p possesses an F-BAR domain at its N-terminus. Phosphoinositides discriminate between the GTPase activities of Rho3p and Rho4p through Rgd1p and specifically stimulate the RhoGAP activity of Rgd1p on Rho4p.
View Article and Find Full Text PDFThe Rho GTPase-activating protein Rgd1p positively regulates the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Two-hybrid screening identified Tos2p as a candidate Rgd1p-binding protein. Further analyses confirmed that Tos2p binds to the RhoGAP Rgd1p through its C-terminal region.
View Article and Find Full Text PDFRho proteins are essential regulators of polarized growth in eukaryotic cells. These proteins are down-regulated in vivo by specific Rho GTPase Activating Proteins (RhoGAP). We investigated the role of Rgd1 RhoGAP, encoded by the Candida albicans RGD1 gene.
View Article and Find Full Text PDFProtein domain architecture can be used to construct supramolecular structures, to carry out specific functions and to mediate signaling in prokaryotic and eukaryotic cells. The Rgd1p protein of budding yeast contains two domains with different functions in the cell: the F-BAR and RhoGAP domains. The F-BAR domain has been shown to interact with membrane phospholipids and is thought to induce or sense membrane curvature.
View Article and Find Full Text PDFCell polarity is a key element of development in most eukaryotes. The Rho GTPase-activating protein Rgd1p positively regulates the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p contains an F-BAR domain at its N-terminal end in addition to its RhoGAP domain at its C-terminal end.
View Article and Find Full Text PDFRgd1, a GTPase-activating protein, is the only known negative regulator of the Rho3 and Rho4 small GTPases in the yeast Saccharomyces cerevisiae. Rho3p and Rho4p are involved in regulating cell polarity by controlling polarized exocytosis. Co-inactivation of RGD1 and WSC1, which is a cell wall sensor-encoding gene, is lethal.
View Article and Find Full Text PDFThe protein kinase C (PKC) pathway is involved in the maintenance of cell shape and cell integrity in Saccharomyces cerevisiae. Here, we show that this pathway mediates tolerance to low pH and that the Bck1 and Slt2 proteins belonging to the mitogen-activated protein kinase cascade are essential for cell survival at low pH. The PKC pathway is activated during acidification of the extracellular environment, and this activation depends mainly on the Mid2p cell wall sensor.
View Article and Find Full Text PDFThe RhoGAP Rgd1p is involved in different signal transduction pathways in Saccharomyces cerevisiae through its regulatory activity upon the Rho3 and Rho4 GTPases. The rgd1Delta mutant, which presents a mortality at the entry into the stationary phase in minimal medium, is sensitive to medium acidification caused by biomass augmentation. We showed that low-pH shock leads to abnormal intracellular acidification of the rgd1Delta mutant.
View Article and Find Full Text PDFSpiroplasma citri is a plant-pathogenic mollicute phylogenetically related to Gram-positive bacteria. Spiroplasma cells are restricted to the phloem sieve tubes and are transmitted from plant to plant by the leafhopper vector Circulifer haematoceps. In the plant sieve tubes, S.
View Article and Find Full Text PDFThe RGD1 gene from Saccharomyces cerevisiae, which encodes a GTPase-activating protein for the Rho3 and Rho4 small G proteins, exhibits synthetic lethality with the VRP1 and LAS17 genes. Their products are proline-rich proteins that interact with both actin and myosins to ensure polarized growth. By testing functional links, we found that the VRP1 and LAS17 genes are potent suppressors of the rho3Delta mutation.
View Article and Find Full Text PDF