Publications by authors named "Francois Delers"

Background: The intestine is responsible for absorbing dietary lipids and delivering them to the organism as triglyceride-rich lipoproteins (TRL). It is important to determine how this process is regulated in enterocytes, the absorptive cells of the intestine, as prolonged postprandial hypertriglyceridemia is a known risk factor for atherosclerosis. During the postprandial period, dietary lipids, mostly triglycerides (TG) hydrolyzed by pancreatic enzymes, are combined with bile products and reach the apical membrane of enterocytes as postprandial micelles (PPM).

View Article and Find Full Text PDF

Intestine contributes to lipid homeostasis through the absorption of dietary lipids, which reach the apical pole of enterocytes as micelles. The present study aimed to identify the specific impact of these dietary lipid-containing micelles on gene expression in enterocytes. We analyzed, by microarray, the modulation of gene expression in Caco-2/TC7 cells in response to different lipid supply conditions that reproduced either the permanent presence of albumin-bound lipids at the basal pole of enterocytes or the physiological delivery, at the apical pole, of lipid micelles, which differ in their composition during the interprandial (IPM) or the postprandial (PPM) state.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) in cell culture has a density comparable to that of other members of the family Flaviviridae, whereas in vivo infectious particles are found partially in low-density fractions, associated with triacylglycerol (TG)-rich lipoproteins (TRLs). In the blood of infected patients, HCV circulates as heterogeneous particles, among which are lipo-viroparticles (LVPs), globular particles rich in TG and containing viral capsid and RNA. The dual viral and lipoprotein nature of LVPs was addressed further with respect to apolipoprotein composition and post-prandial dynamic lipid changes.

View Article and Find Full Text PDF

Apolipoprotein (apo) A-IV, a component of triglyceride-rich lipoproteins secreted by the small intestine, has been shown to play an important role in the control of lipid homeostasis. Numerous studies have described the induction of apoA-IV gene expression by lipids, but the molecular mechanisms involved in this process remain unknown. In this study, we have demonstrated that a lipid bolus induced transcription of the apoA-IV gene in transgenic mice and that the regulatory region of the apoA-IV gene, composed of the apoC-III enhancer and the apoA-IV promoter (eC3-A4), was responsible for this induction.

View Article and Find Full Text PDF

Intestinal triglyceride-rich lipoproteins (TRL) are synthesized from dietary lipids. This study was designed to evaluate the effects of lipid micelles, mimicking post-digestive duodenal micelles, on the fate of apolipoprotein B (apoB)48-containing lipoproteins by Caco-2 cells. Such micelles, consisting of oleic acid (OA), taurocholate, 2-monooleoylglycerol (2-MO), cholesterol (Chol), and L-alpha-lysophospatidylcholine, were the most efficient inducers of OA uptake and esterification.

View Article and Find Full Text PDF

Enterocytes are highly polarized cells that transfer nutrients across the intestinal epithelium from the apical to the basolateral pole. Apolipoprotein B (apoB) is a secretory protein that plays a key role in the transepithelial transport of dietary fatty acids as triacylglycerol. The evaluation of the control of apoB traffic by lipids is therefore of particular interest.

View Article and Find Full Text PDF