Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño–Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFTropical Pacific variability (TPV) heavily influences global climate, but much is still unknown about its drivers. We examine the impact of South Pacific variability on the modes of TPV: the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). We conduct idealised coupled experiments in which we suppress temperature and salinity variability at all oceanic levels in the South Pacific.
View Article and Find Full Text PDFObservational records show that occurrences of the negative polarity of the Southern Annular Mode (low SAM) is significantly linked to El Niño during austral spring and summer, potentially providing long-lead predictability of the SAM and its associated surface climate conditions. In this study, we explore how this linkage may change under a scenario of a continuation of the ocean temperature trends that have been observed over the past 60 years, which are plausibly forced by increasing greenhouse gas concentrations. We generated coupled model seasonal forecasts for three recent extreme El Niño events by initialising the forecasts with observed ocean anomalies of 1 September 1982, 1997 and 2015 added into (1) the current ocean mean state and into (2) the ocean mean state updated to include double the recent ocean temperature trends.
View Article and Find Full Text PDFIntermittent disruptions to rainfall patterns and intensity over the Pacific Ocean lasting up to ∼ 1 year have major impacts on severe weather, agricultural production, ecosystems, and disease within the Pacific, and in many countries beyond. The frequency with which major disruptions to Pacific rainfall occur has been projected to increase over the 21st century, in response to global warming caused by large 21st century greenhouse gas emissions. Here we use the latest generation of climate models to show that humans may have contributed to the major disruption that occurred in the real world during the late 20th century.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO) drives substantial variability in rainfall, severe weather, agricultural production, ecosystems and disease in many parts of the world. Given that further human-forced changes in the Earth's climate system seem inevitable, the possibility exists that the character of ENSO and its impacts might change over the coming century. Although this issue has been investigated many times during the past 20 years, there is very little consensus on future changes in ENSO, apart from an expectation that ENSO will continue to be a dominant source of year-to-year variability.
View Article and Find Full Text PDFWe modeled the effects of climate change and two forest management scenarios on wood production and forest carbon balance in French forests using process-based models of forest growth. We combined data from the national forest inventory and soil network survey, which were aggregated over a 50 x 50-km grid, i.e.
View Article and Find Full Text PDF