Purpose: The addition of interstitial (IS) needles to intra-cavitary (IC) brachytherapy applicators is associated with improved outcomes in locally advanced cervical cancers involving parametrial tumor extensions. The purpose of this work was to validate a clinical workflow involving 3D-printed caps for a commercial IC split ring applicator that enable using IS needle trajectories tailored to each treatment.
Material And Methods: A dedicated software module was developed in this work allowing users to design patient-specific IS caps without knowledge of computer-aided design (CAD) software.
3D-printed alternatives to standard flocked swabs were rapidly developed to provide a response to the unprecedented and sudden need for an exponentially growing amount of diagnostic tools to fight the COVID-19 pandemic. In light of the anticipated shortage, a hospital-based 3D-printing platform was implemented in our institution for the production of swabs for nasopharyngeal and oropharyngeal sampling based on the freely available, open-source design provided to the community by University of South Florida's Health Radiology and Northwell Health System teams as a replacement for locally used commercial swabs. Validation of our 3D-printed swabs was performed with a head-to-head diagnostic accuracy study of the 3D-printed "Northwell model" with the cobas PCR Media swab sample kit.
View Article and Find Full Text PDFPurpose: The geometry of an immobilization device such as a headrest can cause undesired computed tomography (CT) artifacts that may affect both volume definition and dosimetry in radiotherapy of the brain. The purpose of this work was to reduce CT artifacts caused by a standard hard plastic hollow radiotherapy headrest. This was to be achieved through design and prototyping of a custom-made head support.
View Article and Find Full Text PDFOwing to its short computation time and simplicity, the Ray-Tracing algorithm (RAT) has long been used to calculate dose distributions for the CyberKnife system. However, it is known that RAT fails to fully account for tissue heterogeneity and is therefore inaccurate in the lung. The aim of this study is to make a dosimetric assessment of 219 non-small cell lung cancer CyberKnife plans by recalculating their dose distributions using an independent Monte Carlo (MC) method.
View Article and Find Full Text PDFIntroduction: Trajectory-based volumetric modulated arc therapy (tr-VMAT) treatment plans enable the option for noncoplanar delivery yielding steeper dose gradients and increased sparing of critical structures compared to conventional treatment plans. The addition of translational couch motion to shorten the effective source-to-axis distance (SAD) may result in improved delivery precision and an increased effective dose rate. In this work, tr-VMAT treatment plans using a noncoplanar "baseball stitch" trajectory were implemented, applied to patients presented with cranial targets, and compared to the clinical treatment plans.
View Article and Find Full Text PDFPurpose: The Papillon technique using 50-kVp soft X-rays to treat rectal adenocarcinomas was developed and clinically implemented in the 1960s. We describe differences between accurate dosimetry and clinical implementation of this technique that is extending from its very inception to date.
Methods And Materials: A renaissance of the Papillon technique occurred with two recently introduced 50-kVp systems: Papillon+ by Ariane and a custom-made rectal applicator (consisting of a surface applicator inserted into a proctoscope) by iCAD's Xoft Axxent Electronic Brachytherapy (eBT) System (iCad, Inc.
Purpose: Current high-dose-rate brachytherapy skin treatments with the Freiburg flap (FF) applicator are planned with treatment planning systems based on the American Association of Physicists in Medicine TG-43 data sets, which assume full backscatter conditions in dose calculations. The aim of this work is to describe an experimental method based on radiochromic film dosimetry to evaluate dose calculation accuracy during surface treatments with the FF applicator at different depths and bolus thicknesses.
Methods And Materials: Absolute doses were measured using a reference EBT3 radiochromic film dosimetry system within a Solid Water phantom at different depths (0, 0.
Objective: Dual-energy computed tomography high energy virtual monochromatic images (VMIs) can reduce artifact but suppress iodine attenuation in enhancing tumor. We investigated this trade-off to identify VMI(s) that strike the best balance between iodine detection and artifact reduction.
Methods: The study was performed using an Alderson radiation therapy phantom.
Objective: Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs).
Methods: For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour.
Purpose: In the past, film dosimetry was developed into a powerful tool for external beam radiotherapy treatment verification and quality assurance. The objective of this work was the development and clinical testing of the EBT3 model GafChromic film based brachytherapy quality assurance (QA) system.
Methods And Materials: Retrospective dosimetry study was performed to test a patient-specific QA system for preoperative endorectal brachytherapy that uses a radiochromic film dosimetry system.
Purpose: The authors investigated the energy response of XR-QA2 GafChromic™ film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements.
Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.
Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma.
Methods And Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included.
Purpose: The authors present results of the measurements on the impact of radiochromic film immersion in water. The impact of film piece size, initial optical density, postimmersion waiting time prior to scanning, and the time film was kept in water has been investigated. The authors also investigated the pathways of water penetration into the film during the film immersion in water.
View Article and Find Full Text PDFModulated electron radiotherapy (MERT) has been proven to produce optimal plans for shallow tumors. This study investigates automated approaches to the field determination process in generating optimal MERT plans for few-leaf electron collimator (FLEC)-based MERT, by generating a large database of pre-calculated beamlets stored as phase-space files. Beamlets can be used in an overlapping feathered pattern to reduce the effect of abutting fields, which can contribute to dose inhomogeneities within the target.
View Article and Find Full Text PDFPurpose: One of the major drawbacks of the current radiochromic film dosimetry protocols is the postirradiation waiting time. In this article, the authors study the postirradiation time evolution of the absorption spectrum of radiochromic EBT-2 GAFCHROMIC film model.
Methods: Postirradiation scanning times range from 3 min to 5 days and a dose range extends from 0 to 6 Gy.
Purpose: A common approach for dose assessment during cone beam computed tomography (CBCT) acquisition is to use thermoluminescent detectors for skin dose measurements (on patients or phantoms) or ionization chamber (in phantoms) for body dose measurements. However, the benefits of a daily CBCT image acquisition such as margin reduction in planning target volume and the image quality must be weighted against the extra dose received during CBCT acquisitions.
Methods: The authors describe a two-dimensional reference dosimetry technique for measuring dose from CBCT scans using the on-board imaging system on a Varian Clinac-iX linear accelerator that employs the XR-QA radiochromic film model, specifically designed for dose measurements at low energy photons.
A program was developed, RadSim, which can be used to simulate certain individual interactions of photons, electrons, positrons and alpha particles with a single atom for educational purposes. The program can be run in two modes: manual and simulated. In the manual mode, an individual particle undergoing a specified interaction with a target atom can be simulated, which essentially comes down to a graphical evaluation of kinematic equations.
View Article and Find Full Text PDFA hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique.
View Article and Find Full Text PDF