Publications by authors named "Francois Daoust"

Here we introduce a Raman spectroscopy approach combining multi-spectral imaging and a new fluorescence background subtraction technique to image individual Raman peaks in less than 5 seconds over a square field-of-view of 1-centimeter sides with 350 micrometers resolution. First, human data is presented supporting the feasibility of achieving cancer detection with high sensitivity and specificity - in brain, breast, lung, and ovarian/endometrium tissue - using no more than three biochemically interpretable biomarkers associated with the inelastic scattering signal from specific Raman peaks. Second, a proof-of-principle study in biological tissue is presented demonstrating the feasibility of detecting a single Raman band - here the CH/CH deformation bands from proteins and lipids - using a conventional multi-spectral imaging system in combination with the new background removal method.

View Article and Find Full Text PDF

Significance: Of patients with early-stage breast cancer, 60% to 75% undergo breast-conserving surgery. Of those, 20% or more need a second surgery because of an incomplete tumor resection only discovered days after surgery. An intraoperative imaging technology allowing cancer detection on the margins of breast specimens could reduce re-excision procedure rates and improve patient survival.

View Article and Find Full Text PDF

Raman spectroscopy imaging is a technique that can be adapted for intraoperative tissue characterization to be used for surgical guidance. Here we present a macroscopic line scanning Raman imaging system that has been modified to ensure suitability for intraoperative use. The imaging system has a field of view of 1 × 1 cm and acquires Raman fingerprint images of 40 × 42 pixels, typically in less than 5 minutes.

View Article and Find Full Text PDF

Significance: The primary method of COVID-19 detection is reverse transcription polymerase chain reaction (RT-PCR) testing. PCR test sensitivity may decrease as more variants of concern arise and reagents may become less specific to the virus.

Aim: We aimed to develop a reagent-free way to detect COVID-19 in a real-world setting with minimal constraints on sample acquisition.

View Article and Find Full Text PDF

Significance: Prostate cancer is the most common cancer among men. An accurate diagnosis of its severity at detection plays a major role in improving their survival. Recently, machine learning models using biomarkers identified from Raman micro-spectroscopy discriminated intraductal carcinoma of the prostate (IDC-P) from cancer tissue with a ≥85  %   detection accuracy and differentiated high-grade prostatic intraepithelial neoplasia (HGPIN) from IDC-P with a ≥97.

View Article and Find Full Text PDF

Significance: Raman spectroscopy has been developed for surgical guidance applications interrogating live tissue during tumor resection procedures to detect molecular contrast consistent with cancer pathophysiological changes. To date, the vibrational spectroscopy systems developed for medical applications include single-point measurement probes and intraoperative microscopes. There is a need to develop systems with larger fields of view (FOVs) for rapid intraoperative cancer margin detection during surgery.

View Article and Find Full Text PDF

Background: Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories.

View Article and Find Full Text PDF