Purpose: Treatment planning for CyberKnife (CK) (Accuray, USA) can be performed with Precision (Accuray, USA) or RayStation (RS) (RaySearch Laboratories, Sweden) treatment planning systems (TPS). RaySearch recently released a new version of the CK module in RS 12A. The objective of the study was to compare plan quality between RS 12A and Precision.
View Article and Find Full Text PDFUltra-high dose rate FLASH radiotherapy, a promising cancer treatment approach, offers the potential to reduce healthy tissue damage during radiotherapy. As the mechanisms underlying this process remain unknown, several hypotheses have been proposed, including the altered production of radio-induced species under ultra-high dose rate (UHDR) conditions. This study explores realistic irradiation scenarios with various dose-per-pulse and investigates the role of pulse temporal structure.
View Article and Find Full Text PDFRadiother Oncol
December 2024
Purpose: This study explores the dosimetric feasibility and plan quality of hybrid ultra-high dose rate (UHDR) electron and conventional dose rate (CDR) photon (HUC) radiotherapy for treating deep-seated tumours with FLASH-RT.
Methods: HUC treatment planning was conducted optimizing a broad UHDR electron beam (between 20-250 MeV) combined with a CDR VMAT for a glioblastoma, a pancreatic cancer, and a prostate cancer case. HUC plans were based on clinical prescription and fractionation schemes and compared against clinically delivered plans.
Background: Treatment delivery safety and accuracy are essential to control the disease and protect healthy tissues in radiation therapy. For usual treatment, a phantom-based patient specific quality assurance (PSQA) is performed to verify the delivery prior to the treatment. The emergence of adaptive radiation therapy (ART) adds new complexities to PSQA.
View Article and Find Full Text PDFPurpose: One of the advantages of integrating automated processes in treatment planning is the reduction of manual planning variability. This study aims to assess whether a deep-learning-based auto-planning solution can also reduce the contouring variation-related impact on the planned dose for early-breast cancer treatment.
Methods: Auto- and manual plans were optimized for 20 patients using both auto- and manual OARs, including both lungs, right breast, heart, and left-anterior-descending (LAD) artery.
Purpose: Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect.
View Article and Find Full Text PDFBackground: Studies comparing different radiotherapy treatment techniques-such as volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT)-typically compare one treatment plan per technique. Often, some dose metrics favor one plan and others favor the other, so the final plan decision involves subjective preferences. Pareto front comparisons provide a more objective framework for comparing different treatment techniques.
View Article and Find Full Text PDFBackground And Purpose: Automation in radiotherapy treatment planning aims to improve both the quality and the efficiency of the process. The aim of this study was to report on a clinical implementation of a Deep Learning (DL) auto-planning model for left-sided breast cancer.
Materials And Methods: The DL model was developed for left-sided breast simultaneous integrated boost treatments under deep-inspiration breath-hold.
This work explores the primary activity standardisation of Si as part of the SINCHRON project that aims at filling the geochronological dating gap by making a new precise measurement of the half-life of this nuclide. The stability of some of the radioactive test solutions, providing Si as hexafluorosilicic acid (HSiF), was monitored over long periods, pointing to the adequate sample composition and vial type to ensure stability. These solutions were standardised using liquid scintillation counting with the triple to double coincidence ratio (TDCR) technique and the CIEMAT-NIST efficiency tracing (CNET) method.
View Article and Find Full Text PDFPurpose: In inverse radiotherapy treatment planning, the Pareto front is the set of optimal solutions to the multi-criteria problem of adequately irradiating the planning target volume (PTV) while reducing dose to organs at risk (OAR). The Pareto front depends on the chosen optimisation parameters whose influence (clinically relevant versus not clinically relevant) is investigated in this paper.
Methods: Thirty-one prostate cancer patients treated at our clinic were randomly selected.
Lu decays through low-energy β- and γ-emissions in addition to conversion and Auger electrons. To support the use of this radiopharmaceutical in Switzerland, a Lu solution was standardised using the β-γ coincidence technique, as well as the TDCR method. The solution had no Lu impurity.
View Article and Find Full Text PDFBackground: Beam scanning is a useful technique for the treatment of large tumors when the primary beam size is limited, which is the case with radiation beams used in FLASH radiotherapy.
Purpose: To optimize beam scanning as a dose delivery method for FLASH radiotherapy, it is necessary to first understand the effects of beam scanning on the FLASH effect. To do so, biological FLASH experiments need to be done using defined beam parameters with beam scanning and compared to the situation without beam scanning.
Background: Pre-clinical ultra-high dose rate (UHDR) electron irradiations on time scales of 100 ms have demonstrated a remarkable sparing of brain and lung tissues while retaining tumor efficacy when compared to conventional dose rate irradiations. While clinically-used gantries and intensity modulation techniques are too slow to match such time scales, novel very-high energy electron (VHEE, 50-250 MeV) radiotherapy (RT) devices using 3D-conformed broad VHEE beams are designed to deliver UHDR treatments that fulfill these timing requirements.
Purpose: To assess the dosimetric plan quality obtained using VHEE-based 3D-conformal RT (3D-CRT) for treatments of glioblastoma and lung cancer patients and compare the resulting treatment plans to those delivered by standard-of-care intensity modulated photon RT (IMRT) techniques.
Purpose: Compared with conventional dose rate irradiation (CONV), ultrahigh dose rate irradiation (UHDR) has shown superior normal tissue sparing. However, a clinically relevant widening of the therapeutic window by UHDR, termed "FLASH effect," also depends on the tumor toxicity obtained by UHDR. Based on a combined analysis of published literature, the current study examined the hypothesis of tumor isoefficacy for UHDR versus CONV and aimed to identify potential knowledge gaps to inspire future in vivo studies.
View Article and Find Full Text PDFFLASH radiotherapy is a promising approach to cancer treatment that offers several advantages over conventional radiotherapy. With this novel technique, high doses of radiation are delivered in a short period of time, inducing the so-called FLASH effect - a phenomenon characterized by healthy tissue sparing without alteration of tumor control. The mechanisms behind the FLASH effect remain unknown.
View Article and Find Full Text PDFTobacco products contain radioactive Pb and Po which can be transferred from the filler to the mainstream smoke. When inhaled, they can contribute to the radioactive dose to the lungs and are suspected to significantly contribute to lung cancer from smoking. Currently, no data are available on the radioactive risk of the heated tobacco products (HTP).
View Article and Find Full Text PDFFLASH radiation therapy (RT) is a promising new paradigm in radiation oncology. However, a major question that remains is the robustness and reproducibility of the FLASH effect when different irradiators are used on animals or patients with different genetic backgrounds, diets, and microbiomes, all of which can influence the effects of radiation on normal tissues. To address questions of rigor and reproducibility across different centers, we analyzed independent data sets from The University of Texas MD Anderson Cancer Center and from Lausanne University (CHUV).
View Article and Find Full Text PDFPurpose: This paper presents the capabilities of the Geant4-DNA Monte Carlo toolkit to simulate water radiolysis with scavengers using the step-by-step (SBS) or the independent reaction times (IRT) methods. It features two examples of application areas: (1) computing the escape yield of HO following a Co γ-irradiation and (2) computing the oxygen depletion in water irradiated with 1 MeV electrons.
Methods: To ease the implementation of the chemical stage in Geant4-DNA, we developed a user interface that helps define the chemical reactions and set the concentration of scavengers.
Actinides accumulate within aquatic biota in concentrations several orders of magnitude higher than in the seawater [the concentration factor (CF)], presenting an elevated radiological and biotoxicological risk to human consumers. CFs currently vary widely for the same radionuclide and species, which limits the accuracy of the modeled radiation dose to the public through seafood consumption. We propose that CFs will show less dispersion if calculated using a time-integrated measure of the labile (bioavailable) fraction instead of a specific spot sample of bulk water.
View Article and Find Full Text PDFBackground And Purpose: We describe a multicenter cross validation of ultra-high dose rate (UHDR) (>= 40 Gy/s) irradiation in order to bring a dosimetric consensus in absorbed dose to water. UHDR refers to dose rates over 100-1000 times those of conventional clinical beams. UHDR irradiations have been a topic of intense investigation as they have been reported to induce the FLASH effect in which normal tissues exhibit reduced toxicity relative to conventional dose rates.
View Article and Find Full Text PDFPurpose: Normal tissue (NT) sparing by ultra-high dose rate (UHDR) irradiations compared to conventional dose rate (CONV) irradiations while being isotoxic to the tumor has been termed "FLASH effect" and has been observed when large doses per fraction (d ≳ 5 Gy) have been delivered. Since hypofractionated treatment schedules are known to increase toxicities of late-reacting tissues compared to normofractionated schedules for many clinical scenarios at CONV dose rates, we developed a formalism based on the biologically effective dose (BED) to assess the minimum magnitude of the FLASH effect needed to compensate the loss of late-reacting NT sparing when reducing the number of fractions compared to a normofractionated CONV treatment schedule while remaining isoeffective to the tumor.
Methods: By requiring the same BED for the tumor, we derived the "break-even NT sparing weighting factor" W for the linear-quadratic (LQ) and LQ-linear (LQ-L) models for an NT region irradiated at a relative dose r (relative to the prescribed dose per fraction d to the tumor).
Background: RaySearch (AB, Stockholm) has released a module for CyberKnife (CK) planning within its RayStation (RS) treatment planning system (TPS).
Purpose: To create and validate beam models of fixed, Iris, and multileaf collimators (MLC) of the CK M6 for Monte Carlo (MC) and collapsed cone (CC) algorithms in the RS TPS.
Methods: Measurements needed for the creation of the beam models were performed in a water tank with a stereotactic PTW 60018 diode.