In lampreys, respiration consists of a fast and a slow rhythm. This study was aimed at characterizing both anatomically and physiologically the brainstem regions involved in generating the two rhythms. The fast rhythm generator has been located by us and others in the rostral hindbrain, rostro-lateral to the trigeminal motor nucleus.
View Article and Find Full Text PDFMeso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys.
View Article and Find Full Text PDFMolecules present in an animal's environment can indicate the presence of predators, food, or sexual partners and consequently, induce migratory, reproductive, foraging, or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitary chemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While a great deal of research has focused on the olfactory and gustatory system over the years, it is only recently that significant attention has been devoted to the SCC system.
View Article and Find Full Text PDFDetection of chemical cues is important to guide locomotion in association with feeding and sexual behavior. Two neural pathways responsible for odor-evoked locomotion have been characterized in the sea lamprey (Petromyzon marinus L.), a basal vertebrate.
View Article and Find Full Text PDFLocomotion occurs sporadically and needs to be started, maintained, and stopped. The neural substrate underlying the activation of locomotion is partly known, but little is known about mechanisms involved in termination of locomotion. Recently, reticulospinal neurons (stop cells) were found to play a crucial role in stopping locomotion in the lamprey: their activation halts ongoing locomotion and their inactivation slows down the termination process.
View Article and Find Full Text PDFOdor-guided behaviors, including homing, predator avoidance, or food and mate searching, are ubiquitous in animals. It is only recently that the neural substrate underlying olfactomotor behaviors in vertebrates was uncovered in lampreys. It consists of a neural pathway extending from the medial part of the olfactory bulb (medOB) to locomotor control centers in the brainstem via a single relay in the caudal diencephalon.
View Article and Find Full Text PDFThe mesencephalic locomotor region (MLR) plays a crucial role in locomotor control. In vertebrates, stimulation of the MLR at increasing intensities elicits locomotion of growing speed. This effect has been presumed to result from higher brain inputs activating the MLR like a dimmer switch.
View Article and Find Full Text PDFOlfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2016
Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson's disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output.
View Article and Find Full Text PDFIn vertebrates, stimulation of the mesencephalic locomotor region (MLR) on one side evokes symmetrical locomotor movements on both sides. How this occurs was previously examined in detail in a swimmer using body undulations (lamprey), but in tetrapods the downstream projections from the MLR to brainstem neurons are not fully understood. Here we examined the brainstem circuits from the MLR to identified reticulospinal neurons in the salamander Notophthalmus viridescens.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
The contribution of dopamine (DA) to locomotor control is traditionally attributed to ascending dopaminergic projections from the substantia nigra pars compacta and the ventral tegmental area to the basal ganglia, which in turn project down to the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion in vertebrates. However, a dopaminergic innervation of the pedunculopontine nucleus, considered part of the MLR, was recently identified in the monkey. The origin and role of this dopaminergic input are unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2012
When animals move, respiration increases to adapt for increased energy demands; the underlying mechanisms are still not understood. We investigated the neural substrates underlying the respiratory changes in relation to movement in lampreys. We showed that respiration increases following stimulation of the mesencephalic locomotor region (MLR) in an in vitro isolated preparation, an effect that persists in the absence of the spinal cord and caudal brainstem.
View Article and Find Full Text PDFThis study examines the connectivity in the neural networks controlling respiration in the lampreys, a basal vertebrate. Previous studies have shown that the lamprey paratrigeminal respiratory group (pTRG) plays a crucial role in the generation of respiration. By using a combination of anatomical and physiological techniques, we characterized the bilateral connections between the pTRGs and descending projections to the motoneurons.
View Article and Find Full Text PDFIt is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones.
View Article and Find Full Text PDFCentral networks modulate sensory transmission during motor behavior. Sensory inputs may thus have distinct impacts according to the state of activity of the central networks. Using an in-vitro isolated lamprey brainstem preparation, we investigated whether a brainstem locomotor center, the mesencephalic locomotor region (MLR), modulates sensory transmission.
View Article and Find Full Text PDFBackground: The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in "functional" pain syndromes.
Methodology/principal Findings: Acidic saline (AS, pH 4.
A unilateral activation of the mesencephalic locomotor region (MLR) produces symmetrical bilateral locomotion in all vertebrate species tested to date. How this occurs remains unresolved. This study examined the possibility that the symmetry occurred at the level of the inputs from the MLR to reticulospinal (RS) cells.
View Article and Find Full Text PDFSensory inputs are subjected to modulation by central neural networks involved in controlling movements. It has been shown that serotonin (5-HT) modulates sensory transmission. This study examines in lampreys the effects of 5-HT on sensory transmission to brainstem reticulospinal (RS) neurons and the distribution of 5-HT cells that innervate RS cells.
View Article and Find Full Text PDFThe spinal circuitry underlying the generation of basic locomotor synergies has been described in substantial detail in lampreys and the cellular mechanisms have been identified. The initiation of locomotion, on the other hand, relies on supraspinal networks and the cellular mechanisms involved are only beginning to be understood. This review examines some of the findings relative to the neural mechanisms involved in the initiation of locomotion of lampreys.
View Article and Find Full Text PDFBackground: Medical problems are often complex and ill-structured. In formulating the problem, one has to discriminate pertinent elements from irrelevant information in order to effectively find a solution. In this observation study, we describe how medical students formulate the problem of a complex case.
View Article and Find Full Text PDFThe localization of gamma-aminobutyric acid (GABA) has been well described in most classes of vertebrates but not in adult lampreys. The question if the GABA distribution is similar throughout the vertebrate subphylum is therefore still to be addressed. We here investigate two lamprey species, the sea lamprey, Petromyzon marinus, and the river lamprey, Lampetra fluviatilis, and compare the GABA pattern with that of other vertebrates.
View Article and Find Full Text PDFThe mesencephalic locomotor region (MLR) plays a significant role in the control of locomotion in all vertebrate species investigated. Forebrain neurons are likely to modulate MLR activity, but little is known about their inputs. Descending GABAergic projections to the MLR were identified by double-labeling neurons using Neurobiotin injected into the MLR combined with immunofluorescence against GABA.
View Article and Find Full Text PDFThis study examined the spatial and temporal distribution of serotonin-immunoreactive (5-HT-ir) neurons in the brainstem of Petromyzon marinus at three developmental stages, larval, postmetamorphic, and reproductive. Computer-assisted 3-D reconstructions were made of the three main 5-HT-ir neuron groups. The rostralmost brainstem group was located near the posterior commissure, the second group at the isthmus, and the third group in the bulbar area.
View Article and Find Full Text PDF