We report direct determination of the structures and dynamics of interfacial water on a hydrophilic surface with atomic-scale resolution using ultrafast electron crystallography. On the nanometer scale, we observed the coexistence of ordered surface water and crystallite-like ice structures, evident in the superposition of Bragg spots and Debye-Scherrer rings. The structures were determined to be dominantly cubic, but each undergoes different dynamics after the ultrafast substrate temperature jump.
View Article and Find Full Text PDFThe static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1-1 nm) and time (10(-13) to 10(-12) s) represent the quantum limit, the nonstatistical regime of rates.
View Article and Find Full Text PDF