Publications by authors named "Franco Scarselli"

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion. Based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked to the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they were demonstrated to be equivalent (Morris et al., 2019 and Xu et al.

View Article and Find Full Text PDF

In the context of deep learning models, attention has recently been paid to studying the surface of the loss function in order to better understand training with methods based on gradient descent. This search for an appropriate description, both analytical and topological, has led to numerous efforts in identifying spurious minima and characterize gradient dynamics. Our work aims to contribute to this field by providing a topological measure for evaluating loss complexity in the case of multilayer neural networks.

View Article and Find Full Text PDF

Graph Neural Networks have proven to be very valuable models for the solution of a wide variety of problems on molecular graphs, as well as in many other research fields involving graph-structured data. Molecules are heterogeneous graphs composed of atoms of different species. Composite graph neural networks process heterogeneous graphs with multiple-state-updating networks, each one dedicated to a particular node type.

View Article and Find Full Text PDF

Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that GNNs are as powerful as the Weisfeiler-Lehman test (1-WL) in their ability to distinguish graphs.

View Article and Find Full Text PDF

Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes. Predicting the probability of side-effects, before their occurrence, is fundamental to reduce this impact, in particular on drug discovery. Candidate molecules could be screened before undergoing clinical trials, reducing the costs in time, money, and health of the participants.

View Article and Find Full Text PDF

Many real-world domains involve information naturally represented by graphs, where nodes denote basic patterns while edges stand for relationships among them. The graph neural network (GNN) is a machine learning model capable of directly managing graph-structured data. In the original framework, GNNs are inductively trained, adapting their parameters based on a supervised learning environment.

View Article and Find Full Text PDF
Article Synopsis
  • Timely recognition of malignant melanoma (MM) is crucial for reducing mortality, but traditional dermatologic methods struggle with accuracy due to variability in dermatologist experience.
  • A Deep Convolutional Neural Network (DCNN) model, called iDCNN_aMSL, was developed by integrating dermoscopic images and clinical data to improve classification of atypical melanocytic skin lesions (aMSL).
  • The iDCNN_aMSL outperformed both another DCNN model and dermatologists in accuracy, demonstrating its potential to assist in decision-making and reduce unnecessary excisions for aMSL management.
View Article and Find Full Text PDF

Multi-parametric prostate MRI (mpMRI) is a powerful tool to diagnose prostate cancer, though difficult to interpret even for experienced radiologists. A common radiological procedure is to compare a magnetic resonance image with similarly diagnosed cases. To assist the radiological image interpretation process, computerized Content-Based Image Retrieval systems (CBIRs) can therefore be employed to improve the reporting workflow and increase its accuracy.

View Article and Find Full Text PDF

Background And Objectives: Deep learning models and specifically Convolutional Neural Networks (CNNs) are becoming the leading approach in many computer vision tasks, including medical image analysis. Nevertheless, the CNN training usually requires large sets of supervised data, which are often difficult and expensive to obtain in the medical field. To address the lack of annotated images, image generation is a promising method, which is becoming increasingly popular in the computer vision community.

View Article and Find Full Text PDF

The Vapnik-Chervonenkis dimension (VC-dim) characterizes the sample learning complexity of a classification model and it is often used as an indicator for the generalization capability of a learning method. The VC-dim has been studied on common feed-forward neural networks, but it has yet to be studied on Graph Neural Networks (GNNs) and Recursive Neural Networks (RecNNs). This paper provides upper bounds on the order of growth of the VC-dim of GNNs and RecNNs.

View Article and Find Full Text PDF

Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g.

View Article and Find Full Text PDF

This paper proposes the combination of two state-of-the-art algorithms for processing graph input data, viz., the probabilistic mapping graph self organizing map, an unsupervised learning approach, and the graph neural network, a supervised learning approach. We organize these two algorithms in a cascade architecture containing a probabilistic mapping graph self organizing map, and a graph neural network.

View Article and Find Full Text PDF

Relevance ranking consists in sorting a set of objects with respect to a given criterion. However, in personalized retrieval systems, the relevance criteria may usually vary among different users and may not be predefined. In this case, ranking algorithms that adapt their behavior from users' feedbacks must be devised.

View Article and Find Full Text PDF

In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs.

View Article and Find Full Text PDF

Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs.

View Article and Find Full Text PDF

Recursive neural networks are a powerful tool for processing structured data. According to the recursive learning paradigm, the input information consists of directed positional acyclic graphs (DPAGs). In fact, recursive networks are fed following the partial order defined by the links of the graph.

View Article and Find Full Text PDF

In this paper, we present a review of some recent works on approximation by feedforward neural networks. A particular emphasis is placed on the computational aspects of the problem, i.e.

View Article and Find Full Text PDF