Publications by authors named "Franco K K Li"

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices.

View Article and Find Full Text PDF

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products.

View Article and Find Full Text PDF
Article Synopsis
  • Gram-positive bacteria are becoming increasingly resistant to drugs, posing a significant challenge in treating infections caused by major clinical pathogens.
  • Their cell walls contain a thick layer of peptidoglycan modified by wall teichoic acid, which is linked to harmful effects and cell regulation, making it a potential target for new antibiotics.
  • This study presents the crystal structures of LCP enzymes involved in the transfer of wall teichoic acid, providing valuable insights for the development of specific inhibitors that could combat various bacterial infections.
View Article and Find Full Text PDF

Gram-positive bacteria endow their peptidoglycan with glycopolymers that are crucial for viability and pathogenesis. However, the cellular machinery that executes this function is not well understood. While decades of genetic and phenotypic work have highlighted the LytR-CpsA-Psr (LCP) family of enzymes as cell-wall glycopolymer transferases, their in vitro characterization has been elusive, largely due to a paucity of tools for functional assays.

View Article and Find Full Text PDF

The cell wall of most Gram-positive bacteria contains equal amounts of peptidoglycan and the phosphate-rich glycopolymer wall teichoic acid (WTA). During phosphate-limited growth of the Gram-positive model organism Bacillus subtilis 168, WTA is lost from the cell wall in a response mediated by the PhoPR two-component system, which regulates genes involved in phosphate conservation and acquisition. It has been thought that WTA provides a phosphate source to sustain growth during starvation conditions; however, WTA degradative pathways have not been described for this or any condition of bacterial growth.

View Article and Find Full Text PDF