Drug abuse is associated with significant health risk. Whether drug abusers are at a higher risk of suffering the metabolic syndrome is not widely known. The metabolic syndrome is a cluster of metabolic abnormalities, including hyperinsulinemia, hypertension, dyslipidemia, and abdominal obesity, and is probably triggered by initial imbalances at the cellular level in various critical metabolic pathways.
View Article and Find Full Text PDFNutritional deficiency in combination with drug abuse may increase risk of developing the metabolic syndrome by augmenting cell damage, excitotoxicity, reducing energy production, and lowering the antioxidant potential of the cells. We have reviewed here the following points: effects of drugs of abuse on nutrition and brain metabolism; effects of nutrition on actions of the drugs of abuse; drug abuse and probability of developing metabolic syndrome; role of genetic vulnerability in nutrition/drug abuse and brain damage; and the role of neuroprotective supplements in drug abuse. Nutrition education is an essential component of substance abuse treatment programs and can enhance substance abuse treatment outcomes.
View Article and Find Full Text PDFA number of strategies using the nutritional approach are emerging for the protection of the brain from damage caused by metabolic toxins, age, or disease. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach that may prevent further damage. Various models have been developed to study the impact of metabolism on brain function.
View Article and Find Full Text PDFThe damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons.
View Article and Find Full Text PDFSome of the damage to the CNS that is observed following amphetamine and methamphetamine (METH) administration is known to be linked to increased formation of free radicals. This increase could be, in part, related to mitochondrial dysfunction and/or cause damage to the mitochondria, thereby leading to a failure of cellular energy metabolism and an increase in secondary excitotoxicity. The actual neuronal damage that occurs with METH-induced toxicity seems to affect dopaminergic cells in particular.
View Article and Find Full Text PDFThere is growing evidence that suggests that brain injury after amphetamine and methamphetamine (METH) administration is due to an increase in free radical formation and mitochondrial damage, which leads to a failure of cellular energy metabolism followed by a secondary excitotoxicity. Neuronal degeneration caused by drugs of abuse is also associated with decreased ATP synthesis. Defective mitochondrial oxidative phosphorylation and metabolic compromise also play an important role in atherogenesis, in the pathogenesis of Alzheimer's disease, Parkinson's disease, diabetes, and aging.
View Article and Find Full Text PDF