Publications by authors named "Franco De Palma"

Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures have emerged as front-runners for future hole-based quantum processors. Here, we present strong coupling between a hole charge qubit, defined in a double quantum dot (DQD) in planar Ge, and microwave photons in a high-impedance (Z = 1.3 kΩ) resonator based on an array of superconducting quantum interference devices (SQUIDs).

View Article and Find Full Text PDF

One of the most promising platforms for the realization of spin-based quantum computing are planar germanium quantum wells embedded between silicon-germanium barriers. To achieve comparably thin stacks with little surface roughness, this type of heterostructure can be grown using the so-called reverse linear grading approach, where the growth starts with a virtual germanium substrate followed by a graded silicon-germanium alloy with an increasing silicon content. However, the compatibility of such reverse-graded heterostructures with superconducting microwave resonators has not yet been demonstrated.

View Article and Find Full Text PDF