Publications by authors named "Franco Agustin Sviercz"

Bone loss is a prevalent characteristic among people with HIV (PWH). We focused on mesenchymal stem cells (MSCs) and osteoblasts, examining their susceptibility to different HIV strains (R5- and X4-tropic) and the subsequent effects on bone tissue homeostasis. Our findings suggest that MSCs and osteoblasts are susceptible to R5- and X4-tropic HIV but do not support productive HIV replication.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) might impact disease progression in people living with HIV (PLWH), including those on effective combination antiretroviral therapy (cART). These individuals often experience chronic conditions characterized by proviral latency or low-level viral replication in CD4+ memory T cells and tissue macrophages. Pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IFN-γ, can reactivate provirus expression in both primary cells and cell lines.

View Article and Find Full Text PDF

Due to a common mode of transmission through infected human blood, hepatitis C virus (HCV) and human immunodeficiency virus (HIV) co-infection is relatively prevalent. In alignment with this, HCV co-infection is associated with an increased size of the HIV reservoir in highly active antiretroviral therapy (HAART)-treated individuals. Hence, it is crucial to comprehend the physiological mechanisms governing the latency and reactivation of HIV in reservoirs.

View Article and Find Full Text PDF

Liver fibrosis is the excessive accumulation of extracellular matrix proteins, primarily collagen, in response to liver injury caused by chronic liver diseases. HIV infection accelerates the progression of liver fibrosis in patients co-infected with HCV or HBV compared to those who are only mono-infected. The early event in the progression of liver fibrosis involves the activation of hepatic stellate cells (HSCs), which entails the loss of lipid droplets (LD) to fuel the production of extracellular matrix components crucial for liver tissue healing.

View Article and Find Full Text PDF

Osteoarticular injury is the most common presentation of active brucellosis in humans. Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is a potential factor involved in bone loss.

View Article and Find Full Text PDF

is an emerging pathogen that causes septic arthritis, osteomyelitis, and bacteremia in children from 6 to 48 months of age. The presence of bacteria within or near the bone is associated with an inflammatory process that results in osteolysis, but the underlying pathogenic mechanisms involved are largely unknown. To determine the link between and bone loss, we have assessed whether infection or through the genesis of a pro-inflammatory microenvironment can promote osteoclastogenesis.

View Article and Find Full Text PDF