Due to their outstanding elastic limit, biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials to decrease the size of medical implants and therefore reduce their invasiveness. However, the practical use of classical Ti-BMGs in medical applications is in part hindered by their high copper content: more effort is thus required to design low-copper Ti-BMGs. In this work, in line with current rise in AI-driven tools, machine learning (ML) approaches, a neural-network ML model is used to explore the glass-forming ability (GFA) of unreported low-copper compositions within the biocompatible Ti-Zr-Cu-Pd system.
View Article and Find Full Text PDFUnlabelled: In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone.
View Article and Find Full Text PDFThis study reports on the incorporation of the self-setting polysaccharide derivative hydrogel (silanized-hydroxypropyl methylcellulose, Si-HPMC) into the formulation of calcium phosphate cements (CPCs) to develop a novel injectable material for bone substitution. The effects of Si-HPMC on the handling properties (injectability, cohesion and setting time) and mechanical properties (Young's modulus, fracture toughness, flexural and compressive strength) of CPCs were systematically studied. It was found that Si-HPMC could endow composite CPC pastes with an appealing rheological behavior at the early stage of setting, promoting its application in open bone cavities.
View Article and Find Full Text PDFSince their initial formulation in the 1980s, calcium phosphate cements (CPCs) have been increasingly used as bone substitutes. This article provides an overview on the chemistry, kinetics of setting and handling properties (setting time, cohesion and injectability) of CPCs for bone substitution, with a focus on their mechanical properties. Many processing parameters, such as particle size, composition of cement reactants and additives, can be adjusted to control the setting process of CPCs, concomitantly influencing their handling and mechanical performance.
View Article and Find Full Text PDFThe influence of cellulose ether additives (CEAs) on the performance of final calcium phosphate cement (CPC) products is thoroughly investigated. Four CEAs were added into the liquid phase of apatitic CPCs based on the hydrolysis of α-tricalcium phosphate, to investigate the influence of both molecular weight and degree of substitution on the CPCs' properties, including handling (e.g.
View Article and Find Full Text PDF