Publications by authors named "Franck Quero"

Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).

View Article and Find Full Text PDF

In this study, we present a novel method for fabricating semi-transparent electrodes by combining silver nanowires (AgNW) with titanium nitride (TiN) layers, resulting in conductive nanocomposite coatings with exceptional electromechanical properties. These nanocomposites were deposited on cellulose nanopaper (CNP) using a plasma-enhanced pulsed laser deposition (PE-PLD) technique at low temperatures (below 200 °C). Repetitive bending tests demonstrate that incorporating AgNW into TiN coatings significantly enhances the microstructure, increasing the electrode's electromechanical robustness by up to four orders of magnitude compared to commercial PET/ITO substrates.

View Article and Find Full Text PDF

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm.

View Article and Find Full Text PDF

In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the effects of modified silver nanoparticles on two bacterial cultures, Proteus mirabilis and Klebsiella pneumoniae, revealing effective antibacterial activity at various concentrations.
  • The zones of inhibition indicated significant growth suppression, with P. mirabilis showing larger inhibition zones compared to K. pneumoniae at higher nanoparticle concentrations.
  • Additionally, the silver nanoparticles were found to inhibit growth in A549 lung cancer cells at a concentration of 500 µg/mL, highlighting their potential as a dual-purpose treatment for both bacterial infections and cancer.
View Article and Find Full Text PDF

A new benzotrithiophene-based small molecule, namely 2,5,8-Tris[5-(2,2-dicyanovinyl)-2-thienyl]-benzo[1,2-b:3,4-b':6,5-b″]-trithiophene (DCVT-BTT), was successfully synthesized and subsequently characterized. This compound was found to present an intense absorption band at a wavelength position of ∼544 nm and displayed potentially relevant optoelectronic properties for photovoltaic devices. Theoretical studies demonstrated an interesting behavior of charge transport as electron donor (hole-transporting) active material for heterojunction cells.

View Article and Find Full Text PDF

For biomedical applications, gelatin is usually modified with methacryloyl groups to obtain gelatin methacryloyl (GelMA), which can be crosslinked by a radical reaction induced by low wavelength light to form mechanically stable hydrogels. The potential of GelMA hydrogels for tissue engineering has been well established, however, one of the main disadvantages of mammalian-origin gelatins is that their sol-gel transitions are close to room temperature, resulting in significant variations in viscosity that can be a problem for biofabrication applications. For these applications, cold-water fish-derived gelatins, such as salmon gelatin, are a good alternative due to their lower viscosity, viscoelastic and mechanical properties, as well as lower sol-gel transition temperatures, when compared with mammalian gelatins.

View Article and Find Full Text PDF

Recent years, metal pollution is an alarming factor to know about protects the environmental ecosystem due to the toxic, persistent and abundant in nature. Metals are present everywhere in the biotic and abiotic samples including soil, water, and microbes. The rate of bioaccumulation and biotransformation are very high.

View Article and Find Full Text PDF

Zinc (Zn) and, alternatively, nickel (Ni) substituted cobalt ferrite (CF) nanoparticles (NPs) were prepared by sol-gel method. X-ray diffraction analysis revealed the formation of cubic structure of cobalt ferrite. FTIR analysis confirmed the vibrational band located at 550-580 cm that belongs to the M - O bond (M = Ni, and Zn).

View Article and Find Full Text PDF

Over the last three decades but more particularly during the last 5 years, auxetic mechanical metamaterials constructed from precisely architected polymer-based materials have attracted considerable attention due to their fascinating mechanical properties. These materials present a negative Poisson's ratio and therefore unusual mechanical behavior, which has resulted in enhanced static modulus, energy adsorption, and shear resistance, as compared with the bulk properties of polymers. Novel advanced polymer processing and fabrication techniques, and in particular additive manufacturing, allow one to design complex and customizable polymer architectures that are particularly relevant to fabricate auxetic mechanical metamaterials.

View Article and Find Full Text PDF

This study looked at the development of effective biosorbents to recover the most toxic elements from industrial water. B. amyloliquefaciens was isolated from marine soils showing extreme resistance to Chromium (Cr(VI)) ions.

View Article and Find Full Text PDF

FeO nanospheres (Nsps) and chitosan (Cts)/FeO Nsps were prepared using a one-pot hydrothermal method and subsequently used as photocatalysts against the degradation of Congo red (CR) dye molecules. The sphere-shaped FeO nanoparticles were heterogeneously decorated by the Cts matrix, which was confirmed by powder X-ray diffraction, scanning and transmission electron microscopies. The Cts/FeO Nsps demonstrated 98% efficient photocatalytic activity against CR dye molecules upon 60 min exposure to visible light compared to FeO Nsps (77% for 60 min).

View Article and Find Full Text PDF

In the present study, chitosan-containing nanocomposites were investigated as new antibacterial agents. Magnetite (FeO) nanoparticles (NPs) as well as chitosan (CS)/FeO nanocomposites (NCs) and graphene(Gr)/CS/FeO NCs were synthesized by simple hydrothermal method. Their composition, structure and morphology were studied, followed by the evaluation of their antibacterial activity against ESBL-producing and gram-negative P.

View Article and Find Full Text PDF

In the present study, the chemical composition of Morinda citrifolia essential oils was determined by gas chromatography-mass spectrometry and was found to contain several anti-cancer compounds including L-scopoletin, nordamnacanthal, β-morindone, α-copaene, 9-H-pyrido[3,4-b]indole, β-thujene and terpinolene. The physico-chemical characterization of chitosan, chitosan nanoparticles and Morinda citrifolia essential oils loaded chitosan nanoparticles combination was carried out by Fourier transform infrared spectroscopy, powder X-ray diffraction and dynamic light scattering coupled with zeta potential. The morphological observation obtained by scanning electron microscopy and transmission electron microscopy provided clear indication that the immobile chitosan polymer formed a coating onto the Morinda citrifolia essential oils surface.

View Article and Find Full Text PDF

Multifunctional chitosan/magnetite (CS/FeO) and graphene/chitosan/magnetite (Gr/CS/FeO) nanocomposites (NCs) were synthesized using a simple hydrothermal method. The NCs were subsequently evaluated as magnetic photocatalysts towards the photodegradation of dye molecules that are detrimental to the environment. In the present study, sphere shaped FeO nanoparticles (NPs) were found to uniformly decorate CS and Gr surfaces.

View Article and Find Full Text PDF

Protein functionalized cellulose fibrils were isolated from the tunic of and subsequently used to produce protein functionalized cellulose membranes. Bleached cellulose membranes were also obtained and used as reference material. FTIR and Raman spectroscopy demonstrated that the membranes are mostly constituted of cellulose along with the presence of residual proteins and pigments.

View Article and Find Full Text PDF

Novel antimicrobial 3D-printed alginate/bacterial-cellulose hydrogels with in situ-synthesized copper nanostructures were developed having improved printability. Prior to 3D printing, two methods were tested for the development of the alginate hydrogels: (a) ionic cross-linking with calcium ions followed by ion exchange with copper ions (method A) and (b) ionic cross-linking with copper ions (method B). A solution containing sodium borohydride, used as a reducing agent, was subsequently added to the hydrogels, producing in situ clusters of copper nanoparticles embedded in the alginate hydrogel matrix.

View Article and Find Full Text PDF

The ability of a natural stabilizing and reducing agent on the synthesis of silver nanoparticles (Ag NPs) was explored using a rapid and single-pot biological reduction method using Nocardiopsis sp. GRG1 (KT235640) biomass. The UV-visible spectral analysis of Ag NPs was found to show a maximum absorption peak located at a wavelength position of ∼422 nm for initial conformation.

View Article and Find Full Text PDF

The synthesis of nickel oxide nanoparticles (NiO NPs) and graphene/nickel oxide nanocomposites (Gr/NiO NCs) was performed using a simple chemical reduction method. Powder X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to examine the crystalline nature and thermal stability of the synthesized NiO NPs and Gr/NiO NCs, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to observe the morphology of NiO NPs and Gr/NiO NCs and estimate their size range.

View Article and Find Full Text PDF

Tissue regeneration is witnessing a significant surge in advanced medicine. It requires the interaction of scaffolds with different cell types for efficient tissue formation post-implantation. The presence of tissue subtypes in more complex organs demands the co-existence of different biomaterials showing different hydrolysis rate for specialized cell-dependent remodeling.

View Article and Find Full Text PDF

In the present investigation functional chitosan/silver nanocomposites (CS/Ag NCs) were successfully synthesized and found to possess favorable antibacterial activity against extended spectrum beta-lactasame (ESBL) producing Pseudomonas aeruginosa. Powder X-ray diffraction showed that the obtained CS/Ag NCs are constituted of highly crystalline Ag nanoparticles (NPs) embedded in an amorphous CS matrix material. Transmission electron microscopy (TEM) analysis provided structural information about CS/Ag NCs, revealing the formation of spherical cluster structures constituted of Ag NPs with size ranging from 6 to 18 nm embedded in the amorphous CS matrix.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO NPs) were synthesized biologically using leaf extract of Camilla japonica. The typical UV-visible spectral peak of CuO NPs was observed at a wavelength of ∼290 nm, which confirmed their successful synthesis. From scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses, the synthesized CuO NPs were found to possess spherical shape.

View Article and Find Full Text PDF

This study was about the simple method for the rapid colorimetric and visual detection of glucose molecules in water medium. Silver nanoparticles were spread on the chitosan surface (CS/Ag NCs) and it was characterized by UV-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The CS/Ag NCs displayed a strong surface plasmon resonance band at 429 nm which disappears in the addition of accelerative concentrations of glucose molecules and it was attended by color alteration from yellow to colorless.

View Article and Find Full Text PDF

Protein-functionalized cellulose fibrils, having various amounts of covalently bonded proteins at their surface, were successfully extracted from the tunic of Pyura chilensis tunicates using successive alkaline extractions. Pure cellulose fibrils were also obtained by further bleaching and were used as reference material. Extraction yields of protein-functionalized cellulose fibrils were within the range of 62-76% by weight based on the dry initial tunic powder.

View Article and Find Full Text PDF

Microfibrillated cellulose (MFC) obtained from eucalyptus was embedded in gelatin from two sources; namely bovine and salmon gelatin. Raman spectroscopy revealed that stress is transferred more efficiently from bovine gelatin to the MFC when compared to salmon gelatin. Young's modulus, tensile strength, strain at failure and work of fracture of the nanocomposite films were improved by ∼67, 131, 43 y 243% respectively when using salmon gelatin as matrix material instead of bovine gelatin.

View Article and Find Full Text PDF