Background: The cell response to transforming growth factor-beta1 (TGF-beta1), a multipotent cytokine with healing potential, varies according to tissue context. We have evaluated the ability of TGF-beta1 overexpression by endovascular gene therapy to stabilize abdominal aortic aneurysms (AAAs) already injured by inflammation and proteolysis.
Methods And Results: Active TGF-beta1 overexpression was obtained in already-developed experimental AAAs in rats after endovascular delivery of an adenoviral construct encoding for a mutated form of active simian TGF-beta1 and in an explant model using human atherosclerotic AAA fragments incubated with recombinant active TGF-beta1.
Background: Identification of molecular factors involved in artery wall stabilization after extracellular matrix injury elicited by inflammation and proteolysis has a major role in the development of new therapies for atherosclerosis. A study from our group demonstrated that endovascular seeding of vascular smooth muscle cells (VSMCs) promotes healing and stabilizes experimental aneurysms by downregulating matrix metalloproteinase and upregulating tissue inhibitor of metalloproteinase and collagen gene expression. We analyzed expression of transforming growth factor-beta (TGF-beta) and its receptors in experimental aneurysms treated with endovascular VSMC therapy.
View Article and Find Full Text PDF