Publications by authors named "Franck Levassort"

Introduction: Periodontal disease is an infectious syndrome presenting inflammatory aspects. Radiographic evaluation is an essential complement to clinical assessment but has limitations such as the impossibility of assessing tissue inflammation. It seems essential to consider new exploration methods in clinical practice.

View Article and Find Full Text PDF

A typical piezoelectric energy harvester is a bimorph cantilever with two layers of piezoelectric material on both sides of a flexible substrate. Piezoelectric layers of lead-based materials, typically lead zirconate titanate, have been mainly used due to their outstanding piezoelectric properties. However, due to lead toxicity and environmental problems, there is a need to replace them with environmentally benign materials.

View Article and Find Full Text PDF

Lead-based materials are widely used in piezoceramics due to their high electromechanical properties. However, due to environmental protection and sustainable development, the use of the toxic element lead (Pb) in electronic devices is strictly restricted, therefore requiring the rapid development of piezoelectric-based devices with lead-free ceramics. In this context, a lead-free doped barium titanate was studied with a dual objective.

View Article and Find Full Text PDF

Research activities on lead-free piezoelectric materials have been ongoing for over 20 years. Generally, the applicability of the main material families is less universal than that of lead-based compositions such as lead zirconate titanate, but in some cases, the corresponding applications have already been identified. Due to the extensive research, it is now possible to manufacture demonstrators and prototypes for different applications and the authors propose in this article to take stock of these advances.

View Article and Find Full Text PDF

A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position.

View Article and Find Full Text PDF

Backing materials with tailored acoustic properties are beneficial for miniaturized ultrasonic transducer design. Whereas piezoelectric P(VDF-TrFE) films are common elements in high-frequency (>20 MHz) transducer design, their low coupling coefficient limits their sensitivity. Defining a suitable sensitivity-bandwidth trade-off for miniaturized high-frequency applications requires backings with impedances of >25 MRayl and strongly attenuating to account for miniaturized requirements.

View Article and Find Full Text PDF

Centimeter-sized BaTiO3-based crystals grown by top-seeded solution growth from the BaTiO3-CaTiO3-BaZrO3 system were used to process a high-frequency (HF) lead-free linear array. Piezoelectric plates with (110)pc cut within 1° accuracy were used to manufacture two 1-3 piezo-composites with thicknesses of 270 and [Formula: see text] for resonant frequencies in air of 10 and 30 MHz, respectively. The electromechanical characterization of the BCTZ crystal plates and the 10-MHz piezocomposite yielded the thickness coupling factors of 40% and 50%, respectively.

View Article and Find Full Text PDF

An innovative processing to deposit P(VDF-TrFE) film on silicon wafers by an inkjet printing method was used to fabricate high-frequency annular array prototype. This prototype has a total aperture of 7.3 mm and 8 active elements.

View Article and Find Full Text PDF

We show how sintering in different atmospheres affects the structural, microstructural, and functional properties of ~30 μm thick films of KNaNbO (KNN) modified with 0.38 mol% KCuTaO and 1 mol% CuO. The films were screen printed on platinized alumina substrates and sintered at 1100 °C in oxygen or in air with or without the packing powder (PP).

View Article and Find Full Text PDF

1-3 piezocomposites are first choice materials for integration in ultrasonic transducers due to their high electromechanical performance, particularly, in their thickness mode. The determination of a complete set of effective electroelastic parameters through a homogenization scheme is of primary importance for their consideration as homogeneous. This allows for the simplification of the transducer design using numerical methods.

View Article and Find Full Text PDF

For transducer design, it is essential to know the acoustic properties of the materials in their operating conditions. At frequencies over 15 MHz, standard methods are not well adapted because layers are very thin and backings have very high attenuation. In this article, we report on an original method for measuring the acoustic properties in the 15-25 MHz frequency range, corresponding to typical skin-imaging applications, using a backing/piezoelectric multilayer structure.

View Article and Find Full Text PDF

A new model for piezoelectric textured ceramics was developed that considers the presence of porosity, which can appear during heat treatment (ceramic sintering). In the long wavelength approximation, a matrix method, which has already been applied to piezoelectric composites, was extended to textured ceramics for three phases [porosity (air), piezoelectric single-crystal (related to the texturation degree), and ceramic] to calculate the effective electroelastic modulus. This method was first compared and validated with finite-element calculations.

View Article and Find Full Text PDF

Dense barium titanate (BaTiO) ceramics ( [Formula: see text]) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO (BT) doped with Co leads to a significant improvement in the properties ( pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions.

View Article and Find Full Text PDF

In the field of high-frequency ultrasound imaging ( MHz), tools for characterizing the performance of imaging systems are lacking. Indeed, commercial phantoms are often inadequate for this frequency range. The development of homemade phantoms on the laboratory scale is often required but is hindered by the difficulty in making very small structures that must be distributed with high accuracy in 3-D space.

View Article and Find Full Text PDF

Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming.

View Article and Find Full Text PDF

The standard fabrication method for 1-3 piezocomposites for ultrasound transducers is the "dice and fill" method (DFM) in which lateral periodicity is introduced. This contributes to the appearance of spurious modes that can drastically affect the performance of the device if they appear near its thickness mode frequency, thus limiting the effective frequency range. A new 1-3 piezocomposite fabricated with a super-cell structure [1-3 super cell (13SC)] was designed in order to overcome these limitations.

View Article and Find Full Text PDF

Phononic crystals made of piezoelectric composites with 1-3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios.

View Article and Find Full Text PDF

An electrophoretic deposition (EPD) process with high deposition rate was used to fabricate a curved piezoelectric thick film devoted to high-frequency transducers for medical imaging. Niobium-doped lead zirconate titanate (PZTNb) powder was stabilized in ethanol to prepare a suspension with high zeta potential and low conductivity. A gold layer, pad-printed and fired on a curved porous PZT substrate, was used as the working electrode for the deposition of the PZTNb thick film.

View Article and Find Full Text PDF

Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging.

View Article and Find Full Text PDF

Pad-printed thick-film transducers have been shown to be an interesting alternative to lapped bulk piezoceramics, because the film is deposited with the required thickness, size, and geometry, thus avoiding any subsequent machining to achieve geometrical focusing. Their electromechanical properties are close to those of bulk ceramics with similar composition despite having a higher porosity. In this paper, padprinted high-frequency transducers based on a low-loss piezoceramic composition are designed and fabricated.

View Article and Find Full Text PDF

The transient analysis of piezoelectric transducers is often performed using finite-element or finite-difference time-domain methods, which efficiently calculate the vibration of the structure but whose numerical dispersion prevents the modeling of waves propagating over large distances. A second analytical or numerical simulation is therefore often required to calculate the pressure field in the propagating medium (typically water) to deduce many important characteristics of the transducer, such as spatial resolutions and side lobe levels. This is why a hybrid algorithm was developed, combining finite- difference and pseudo-spectral methods in the case of 2-D configurations to simulate accurately both the generation of acoustic waves by the piezoelectric transducer and their propagation in the surrounding media using a single model.

View Article and Find Full Text PDF

The goal of this work was to develop an extended ultrasound transducer model that would optimize the trade-off between accuracy of the calculation and computational time. The derivations are presented for a generalized transducer model, that is center frequency, pulse duration and physical dimensions are all normalized. The paper presents a computationally efficient model for lens-focused, circular (axisymmetric) single element piezoelectric ultrasound transducer.

View Article and Find Full Text PDF

A screen-printed PZT thick film with a final thickness of about 40 microm was deposited on a porous PZT substrate to obtain an integrated structure for ultrasonic transducer applications. This process makes it possible to decrease the number of steps in the fabrication of high-frequency, single-element transducers. The porous PZT substrates allow high acoustic impedance and attenuation to be obtained, satisfying transducer backing requirements for medical imaging.

View Article and Find Full Text PDF