Plasmacytoid DCs (pDCs) infiltrate the skin, chronically produce type I interferon (IFN-I), and promote skin lesions and fibrosis in autoimmune patients. However, what controls their activation in the skin is unknown. Here, we report that increased stiffness inhibits the production of IFN-I by pDCs.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is an autoimmune disease that has a strong female predominance. Both the X-linked TLR7 and TLR8 can induce type I IFN (IFN-I) by plasmacytoid DCs (pDCs), which can promote fibrosis. We identified five subclusters of pDCs, including ISGhigh clusters that were over-represented in SSc patients.
View Article and Find Full Text PDFThe discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) can cause a latent infection that sometimes progresses to clinically active tuberculosis (TB). Type I interferons (IFN-I) have been implicated in initiating the progression from latency to active TB, in part because IFN-I stimulated genes are the earliest genes to be upregulated in patients as they advance to active TB. Plasmacytoid dendritic cells (pDCs) are major producers of IFN-I during viral infections and in response to autoimmune-induced neutrophil extracellular traps.
View Article and Find Full Text PDFCentral B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides.
View Article and Find Full Text PDFRegulation of the profile and magnitude of toll-like receptor (TLR) responses is important for effective host defense against infections while minimizing inflammatory toxicity. The chemokine CXCL4 regulates the TLR8 response to amplify inflammatory gene and inflammasome activation while attenuating the interferon (IFN) response in primary monocytes. In this study, we describe an unexpected role for the kinase RIPK3 in suppressing the CXCL4 + TLR8-induced IFN response and providing signal 2 to activate the NLRP3 inflammasome and interleukin (IL)-1 production in primary human monocytes.
View Article and Find Full Text PDFInflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19).
View Article and Find Full Text PDFLung-infiltrating macrophages create a marked inflammatory milieu in a subset of patients with COVID-19 by producing a cytokine storm, which correlates with increased lethality. However, these macrophages are largely not infected by SARS-CoV-2, so the mechanism underlying their activation in the lung is unclear. Type I interferons (IFN-I) contribute to protecting the host against SARS-CoV-2 but may also have some deleterious effect, and the source of IFN-I in the lungs of infected patients is not well defined.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) chronically produce type I interferon (IFN-I) in autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). We report that the IRE1α-XBP1 branch of the unfolded protein response (UPR) inhibits IFN-α production by TLR7- or TLR9-activated pDCs. In SSc patients, UPR gene expression was reduced in pDCs, which inversely correlated with IFN-I-stimulated gene expression.
View Article and Find Full Text PDFRegulation of endosomal Toll-like receptor (TLR) responses by the chemokine CXCL4 is implicated in inflammatory and fibrotic diseases, with CXCL4 proposed to potentiate TLR responses by binding to nucleic acid TLR ligands and facilitating their endosomal delivery. Here we report that in human monocytes/macrophages, CXCL4 initiates signaling cascades and downstream epigenomic reprogramming that change the profile of the TLR8 response by selectively amplifying inflammatory gene transcription and interleukin (IL)-1β production, while partially attenuating the interferon response. Mechanistically, costimulation by CXCL4 and TLR8 synergistically activates TBK1 and IKKε, repurposes these kinases towards an inflammatory response via coupling with IRF5, and activates the NLRP3 inflammasome.
View Article and Find Full Text PDFChemokines control the migratory patterns and positioning of immune cells to organize immune responses to pathogens. However, many chemokines have been associated with systemic autoimmune diseases that have chronic IFN signatures. We report that a series of chemokines, including CXCL4, CXCL10, CXCL12, and CCL5, can superinduce type I IFN (IFN-I) by TLR9-activated plasmacytoid DCs (pDCs), independently of their respective known chemokine receptors.
View Article and Find Full Text PDFUnlabelled: Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer.
View Article and Find Full Text PDFInhibitors of the immunoproteasome (i-20S) have shown promise in mouse models of autoimmune diseases and allograft rejection. In this study, we used a novel inhibitor of the immunoproteasome, PKS3053, that is reversible, noncovalent, tight-binding, and highly selective for the β5i subunit of the i-20S to evaluate the role that i-20S plays in regulating immune responses in vitro and in vivo. In contrast to irreversible, less-selective inhibitors, PKS3053 did not kill any of the primary human cell types tested, including plasmacytoid dendritic cells, conventional dendritic cells, macrophages, and T cells, all of which expressed genes encoding both the constitutive proteasome (c-20S) and i-20S.
View Article and Find Full Text PDFThe immunoproteasome (i-20S) has emerged as a therapeutic target for autoimmune and inflammatory disorders and hematological malignancies. Inhibition of the chymotryptic β5i subunit of i-20S inhibits T cell activation, B cell proliferation, and dendritic cell differentiation in vitro and suppresses immune responses in animal models of autoimmune disorders and allograft rejection. However, cytotoxicity to immune cells has accompanied the use of covalently reactive β5i inhibitors, whose activity against the constitutive proteasome (c-20S) is cumulative with the time of exposure.
View Article and Find Full Text PDFMultiple type I interferons and interferon-γ (IFN-γ) are expressed under physiological conditions and are increased by stress and infections, and in autoinflammatory and autoimmune diseases. Interferons activate the Jak-STAT signaling pathway and induce overlapping patterns of expression, called 'interferon signatures', of canonical interferon-stimulated genes (ISGs) encoding molecules important for antiviral responses, antigen presentation, autoimmunity and inflammation. It has now become clear that interferons also induce an 'interferon epigenomic signature' by activating latent enhancers and 'bookmarking' chromatin, thus reprogramming cell responses to environmental cues.
View Article and Find Full Text PDFPurpose Of Review: The role of type I IFNs (IFN-I) in the promotion of autoimmunity has been well established. However, its role in the skin fibrosis of systemic sclerosis (SSc) is less clear. IFN-I can participate to tissue repair, and, here, we will consider the extent to which IFN-I's role in SSc skin fibrosis may reflect in part IFN-I functions during wound healing.
View Article and Find Full Text PDFFollowing the discovery of plasmacytoid dendritic cells (pDCs) and of their extraordinary ability to produce type I IFNs (IFN-I) in response to TLR7 and TLR9 stimulation, it is assumed that their main function is to participate in the antiviral response. There is increasing evidence suggesting that pDCs and/or IFN-I can also have a detrimental role in a number of inflammatory and autoimmune diseases, in the context of chronic viral infections and in cancers. Whether these cells should be targeted in patients and how much of their biology is connected to IFN-I production remains unclear and is discussed here.
View Article and Find Full Text PDFTLRs have been well characterized in the context of immunity, although TLR8 is understudied due to its controversial function in mice. In this issue of , the new work by Zhang et al. (https://doi.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is a multisystem life-threatening fibrosing disorder that lacks effective treatment. The link between the inflammation observed in organs such as the skin and profibrotic mechanisms is not well understood. The plasmacytoid dendritic cell (pDC) is a key cell type mediating Toll-like receptor (TLR)-induced inflammation in autoimmune disease patients, including lupus and skin diseases with interface dermatitis.
View Article and Find Full Text PDFConstitutive proteasomes (c-20S) are ubiquitously expressed cellular proteases that degrade polyubiquitinated proteins and regulate cell functions. An isoform of proteasome, the immunoproteasome (i-20S), is highly expressed in human T cells, dendritic cells (DCs), and B cells, suggesting that it could be a potential target for inflammatory diseases, including those involving autoimmunity and alloimmunity. Here, we describe DPLG3, a rationally designed, noncovalent inhibitor of the immunoproteasome chymotryptic subunit β5i that has thousands-fold selectivity over constitutive β5c.
View Article and Find Full Text PDFBackground: Systemic sclerosis (SSc) is characterized by a wide variety of symptoms and disease manifestations including joint pain, gastrointestinal dysfunction, interstitial lung disease, and cardiomyopathy.
Questions/purposes: Using the Scleroderma Health Assessment Questionnaire (SHAQ) and Short Form-36 (SF-36) we explored how patient-reported physical health, mental health, and functional status related to these clinical characteristics and to cytokine levels utilizing the Hospital for Special Surgery Scleroderma Registry.
Methods: In a cross-sectional study of 185 patients meeting the 2013 ACR/EULAR criteria for SSc, we compared disease features and patient-reported outcomes (PROs).
An important concept in immunology is the classification of immune responses as either innate or adaptive, based on whether the antigen receptors are encoded in the germline or generated somatically by gene rearrangement. The innate immune system is an ancient mode of immunity, and by being a first layer in our defense against infectious agents, it is essential for our ability to develop rapid and sustained responses to pathogens. We discuss the importance of nucleic acid recognition by the innate immune system to mounting an appropriate immune response to pathogens and also how inflammation driven by uncontrolled recognition of self-nucleic acids can lead to autoimmune diseases.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (PDCs) represent a key cell type for both innate and adaptive immunity. PDCs express both TLR7 and TLR9 and the recognition of nucleic acids by these two receptors triggers the production of a large amount of type-I IFN and the induction of PDC maturation into APCs. This unique feature of PDCs is at the basis of clinical development of both TLR7 and TLR9 agonists for infectious diseases, allergy, cancer, and asthma.
View Article and Find Full Text PDFStudies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels.
View Article and Find Full Text PDF