Publications by authors named "Franck Duong"

Many soluble proteins interact with membranes to perform important biological functions, including signal transduction, regulation, transport, trafficking, and biogenesis. Despite their importance, these protein-membrane interactions are difficult to characterize due to their often-transient nature as well as phospholipids' poor solubility in aqueous solution. Here, we employ nanodiscs-small, water-soluble patches of a lipid bilayer encircled with amphipathic scaffold proteins-along with quantitative proteomics to identify lipid-binding proteins in Using nanodiscs reconstituted with yeast total lipid extracts or only phosphatidylethanolamine (PE-nanodiscs), we capture several known membrane-interacting proteins, including the Rab GTPases Sec4 and Ypt1, which play key roles in vesicle trafficking.

View Article and Find Full Text PDF

During posttranslational translocation in , polypeptide substrates are driven across the membrane through the SecYEG protein-conducting channel using the ATPase SecA, which binds to SecYEG and couples nucleotide hydrolysis to polypeptide movement. Recent studies suggest that SecA is a highly dynamic enzyme, able to repeatedly bind and dissociate from SecYEG during substrate translocation, but other studies indicate that these dynamics, here referred to as "SecA processivity," are not a requirement for transport. We employ a SecA mutant () that associates more tightly to membranes than WT SecA, in addition to a SecA-SecYEG cross-linked complex, to demonstrate that SecA-SecYEG binding and dissociation events are important for efficient transport of the periplasmic protein proPhoA.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a leading cause of death for men in North America. The androgen receptor (AR) - a hormone inducible transcription factor - drives expression of tumor promoting genes and represents an important therapeutic target in PCa. The AR is activated by steroid recruitment to its ligand binding domain (LBD), followed by receptor nuclear translocation and dimerization via the DNA binding domain (DBD).

View Article and Find Full Text PDF

Membrane proteins are difficult to work with due to their insolubility in aqueous solution and quite often their poor stability in detergent micelles. Here, we present the peptidisc for their facile capture into water-soluble particles. Unlike the nanodisc, which requires scaffold proteins of different lengths and precise amounts of matching lipids, reconstitution of detergent solubilized proteins in peptidisc only requires a short amphipathic bi-helical peptide (NSP) and no extra lipids.

View Article and Find Full Text PDF

Nuclease colicins are antibacterial proteins produced by certain strains of E. coli to reduce competition from rival strains. These colicins are generally organized with an N-terminal transport (T)-domain, a central receptor binding (R)-domain, and a C-terminal cytotoxic nuclease domain.

View Article and Find Full Text PDF

The MalE-MalFGK complex is one of the best characterized members of the large and ubiquitous family of ATP-binding cassette (ABC) transporters. It is composed of a membrane-spanning heterodimer, MalF-MalG; a homodimeric ATPase, MalK; and a periplasmic maltose receptor, MalE. Opening and closure of MalK is coupled to conformational changes in MalF-MalG and the alternate exposition of the substrate-binding site to either side of the membrane.

View Article and Find Full Text PDF

TonB-dependent transporters are β-barrel outer membrane proteins occluded by a plug domain. Upon ligand binding, these transporters extend a periplasmic motif termed the TonB box. The TonB box permits the recruitment of the inner membrane protein complex TonB-ExbB-ExbD, which drives import of ligands in the cell periplasm.

View Article and Find Full Text PDF

Unlabelled: The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability.

View Article and Find Full Text PDF

ATP-binding cassette transporters use an alternating access mechanism to move substrates across cellular membranes. This mode of transport ensures the selective passage of molecules while preserving membrane impermeability. The crystal structures of MalFGK2, inward- and outward-facing, show that the transporter is sealed against ions and small molecules.

View Article and Find Full Text PDF

ATP-binding cassette (ABC) transporters have evolved an ATP-dependent alternating-access mechanism to transport substrates across membranes. Despite important progress, especially in their structural analysis, it is still unknown how the substrate stimulates ATP hydrolysis, the hallmark of ABC transporters. In this study, we measure the ATP turnover cycle of MalFGK2 in steady and pre-steady state conditions.

View Article and Find Full Text PDF

The complex MalFGK2 hydrolyzes ATP and alternates between inward- and outward-facing conformations during maltose transport. It has been shown that ATP promotes closure of MalK2 and opening of MalFG toward the periplasm. Yet, why the transporter rests in a conformation facing the cytosol in the absence of nucleotide and how it returns to this state after hydrolysis of ATP is unknown.

View Article and Find Full Text PDF

TonB-dependent membrane receptors from bacteria have been analyzed in detergent-containing solution, an environment that may influence the role of ligand in inducing downstream interactions. We report reconstitution of FhuA into a membrane mimetic: nanodiscs. In contrast to previous results in detergent, we show that binding of TonB to FhuA in nanodiscs depends strongly on ferricrocin.

View Article and Find Full Text PDF

The signal-transducing protein EIIA(Glc) belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIA(Glc) is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIA(Glc) is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure.

View Article and Find Full Text PDF

The coupling between ATP hydrolysis and substrate transport remains a key question in the understanding of ABC-mediated transport. We show using the MalFGK2 complex reconstituted into nanodiscs, that membrane lipids participate directly to the coupling reaction by stabilizing the transporter in a low energy conformation. When surrounded by short acyl chain phospholipids, the transporter is unstable and hydrolyzes large amounts of ATP without inducing maltose.

View Article and Find Full Text PDF

Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved cellular machine that cotranslationally targets proteins to a protein-conducting channel, the bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a passive recipient of the translating ribosome or actively regulates this targeting machinery remains unclear. Here we show that SecYEG drives conformational changes in the cargo-loaded SRP-SR targeting complex that activate it for GTP hydrolysis and for handover of the translating ribosome.

View Article and Find Full Text PDF

The maltose transporter MalFGK(2) is a study prototype for ABC importers. During catalysis, the MalFG membrane domain alternates between inward and outward facing conformations when the MalK dimer closes and hydrolyzes ATP. Because a rapid ATP hydrolysis depends on MalE and maltose, it has been proposed that closed liganded MalE facilitates the transition to the outward facing conformation.

View Article and Find Full Text PDF

The nanodisc is a discoidal particle (~ 10-12 nm large) that trap membrane proteins into a small patch of phospholipid bilayer. The nanodisc is a particularly attractive option for studying membrane proteins, especially in the context of ligand-receptor interactions. The method pioneered by Sligar and colleagues is based on the amphipathic properties of an engineered highly a-helical scaffold protein derived from the apolipoprotein A1.

View Article and Find Full Text PDF

The maltose transporter MalFGK(2), together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar.

View Article and Find Full Text PDF

Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling.

View Article and Find Full Text PDF

The SecA ATPase associates with the SecY complex to push preproteins across the bacterial membrane. Because a single SecY is sufficient to create the conducting channel, the function of SecY oligomerization remains unclear. Here, we have analyzed the translocation reaction using nanodiscs.

View Article and Find Full Text PDF

Integral membrane proteins are challenging to work with biochemically given their insoluble nature; the nanodisc circumvents the difficulty by stabilizing them in small patches of lipid bilayer. Here, we show that nanodiscs combined with SILAC-based quantitative proteomics can be used to identify the soluble interacting partners of virtually any membrane protein. As a proof of principle, we applied the method to the bacterial SecYEG protein-conducting channel, the maltose transporter MalFGK(2) and the membrane integrase YidC.

View Article and Find Full Text PDF

Like the conductor of an orchestra, the Sec protein translocation channel is the platform needed to bring together the many different players required for the constitutive and obligatory process of protein transport. This conserved membrane channel, termed SecY in bacteria and Sec61 in eukaryotes, creates a ubiquitous protein-conducting pathway by which thousands of newly synthesized polypeptides make their way through the lipid bilayer. The channel is not a simple passive pore, however; it displays remarkable complexity by interacting with numerous soluble partners, including SecA, Syd, FtsY and the ribosome in bacteria.

View Article and Find Full Text PDF

Cardiolipin is an ever-present component of the energy-conserving inner membranes of bacteria and mitochondria. Its modulation of the structure and dynamism of the bilayer impacts on the activity of their resident proteins, as a number of studies have shown. Here we analyze the consequences cardiolipin has on the conformation, activity, and localization of the protein translocation machinery.

View Article and Find Full Text PDF

Secretory proteins are transported across the bacterial envelope using a membrane protein complex called the SecY channel or translocon. Major advances in understanding this transporter have been accomplished with methods including purification, crystallization, and reconstitution of the translocation reaction in vitro. We here describe the incorporation of the SecY complex into supported nanometer scale lipid bilayers called Nanodiscs.

View Article and Find Full Text PDF