Plasmodium falciparum, a protozoan parasite and causative agent of human malaria, has one of the most A/T-biased genomes sequenced to date. This may give the genome and the transcriptome unusual structural features. Recent progress in sequencing techniques has made it possible to study the secondary structures of RNA molecules at the transcriptomic level.
View Article and Find Full Text PDFG-quadruplexes are non-helical secondary structures that can fold in vivo in both DNA and RNA. In human cells, they can influence replication, transcription and telomere maintenance in DNA, or translation, transcript processing and stability of RNA. We have previously showed that G-quadruplexes are detectable in the DNA of the malaria parasite Plasmodium falciparum, despite a very highly A/T-biased genome with unusually few guanine-rich sequences.
View Article and Find Full Text PDFCytosine C5 methylation is an important epigenetic control mechanism in a wide array of eukaryotic organisms and generally carried out by proteins of the C-5 DNA methyltransferase family (DNMTs). In several protozoans, the status of this mechanism remains elusive, such as in , the causative agent of the disease leishmaniasis in humans and a wide array of vertebrate animals. In this work, we showed that the genome contains a C-5 DNA methyltransferase () from the subfamily, whose function is still unclear, and verified its expression at the RNA level.
View Article and Find Full Text PDFGuanine-quadruplex (G4) motifs, at both the DNA and RNA levels, have assumed an important place in our understanding of the biology of eukaryotes, bacteria and viruses. However, it is generally little known that their very first description, as well as the foundational work on G4s, was performed on protozoans: unicellular life forms that are often parasitic. In this review, we provide a historical perspective on the discovery of G4s, intertwined with their biological significance across the protozoan kingdom.
View Article and Find Full Text PDFProtozoan parasites of the genus adapt to environmental change through chromosome and gene copy number variations. Only little is known about external or intrinsic factors that govern genomic adaptation. Here, by conducting longitudinal genome analyses of 10 new clinical isolates, we uncovered important differences in gene copy number among genetically highly related strains and revealed gain and loss of gene copies as potential drivers of long-term environmental adaptation in the field.
View Article and Find Full Text PDFLeishmania donovani is the responsible agent for visceral leishmaniasis (VL) in the Indian subcontinent (ISC). The disease is lethal without treatment and causes 0.2 to 0.
View Article and Find Full Text PDFThe parasite Leishmania donovani causes a fatal disease termed visceral leishmaniasis. The process through which the parasite adapts to environmental change remains largely unknown. Here we show that aneuploidy is integral for parasite adaptation and that karyotypic fluctuations allow for selection of beneficial haplotypes, which impact transcriptomic output and correlate with phenotypic variations in proliferation and infectivity.
View Article and Find Full Text PDFHigh throughput sequencing techniques are poorly adapted for in vivo studies of parasites, which require prior in vitro culturing and purification. Trypanosomatids, a group of kinetoplastid protozoans, possess a distinctive feature in their transcriptional mechanism whereby a specific Spliced Leader (SL) sequence is added to the 5'end of each mRNA by trans-splicing. This allows to discriminate Trypansomatid RNA from mammalian RNA and forms the basis of our new multiplexed protocol for high-throughput, selective RNA-sequencing called SL-seq.
View Article and Find Full Text PDFLeishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
August 2014
Two major leishmaniasis treatments have shown a significant decrease in effectiveness in the last few decades, mostly in the Indian subcontinent but also in other endemic areas. Drug resistance of Leishmania correlated only partially to treatment failure (TF) of pentavalent antimonials, and has so far proved not to be important for the increased miltefosine relapse rates observed in the Indian subcontinent. While other patient- or drug-related factors could also have played a role, recent studies identified several parasite features such as infectivity and host manipulation skills that might contribute to TF.
View Article and Find Full Text PDF