IEEE Trans Neural Netw Learn Syst
March 2019
Low-rank matrix completion aims to recover matrices with missing entries and has attracted considerable attention from machine learning researchers. Most of the existing methods, such as weighted nuclear-norm-minimization-based methods and Qatar Riyal (QR)-decomposition-based methods, cannot provide both convergence accuracy and convergence speed. To investigate a fast and accurate completion method, an iterative QR-decomposition-based method is proposed for computing an approximate singular value decomposition.
View Article and Find Full Text PDFIn this paper, we present two watermarking approaches that are robust to geometric distortions. The first approach is based on image normalization, in which both watermark embedding and extraction are carried out with respect to an image normalized to meet a set of predefined moment criteria. We propose a new normalization procedure, which is invariant to affine transform attacks.
View Article and Find Full Text PDF